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Abstract—Conformance checking techniques evaluate
how well a process model aligns with an actual event
log. Existing methods, which are based on optimal trace
alignment, are computationally intensive. To improve
efficiency, a model sampling method has been proposed to
construct a subset of model behaviour that represents the
entire model. However, current model sampling techniques
often lack sufficient model representativeness, limiting their
potential to achieve optimal approximation accuracy. This
paper proposes new model behaviour sampling approaches
using hierarchical clustering to compute an approximation
closer to the exact result. This paper also refines the existing
upper bound algorithm for better approximation. Our
experiments on six real-world event logs demonstrate that
our method improves approximation accuracy compared
to state-of-the-art model sampling methods.
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I. INTRODUCTION

Conformance checking is a set of process mining
functionalities aimed at identifying deviations between
the actual behaviour of the event log (”as-is”) and the
modeled behaviour of the process model (”to-be”). It
facilitates further applications, such as model repair,
anomaly detection, and algorithm evaluation [1]. In
recent years, the alignment-based method [2] has become
the de facto standard for conformance checking in
the computation of conformance diagnostics, since it
always returns the most accurate deviations, known as
optimal alignment [3]. However, finding the optimal
alignment is an NP-hard problem [4]. As the complexity
of the log and model increases, the run-time complexity
of optimal alignment computation grows exponentially,
leading to extremely long computation times, sometimes
even taking several weeks. This makes them impractical
for real-world applications, especially large-scale event
logs. Moreover, in certain cases, an exact conformance
value is not necessary, such as when performing a
preliminary evaluation of process models with various
process discovery algorithms [5].

To address the problems, various approximation
strategies have been proposed, including optimizing the
search algorithm [6], [7] and decomposition schemes
[8], [9]. However, sampling provides another angle for
approximate conformance checking, such as sampling
traces to represent the event log [10], [11] or selecting
model traces to substitute for the process model [5],
[12]. In this paper, we adopt the latter approach, fo-
cusing on model sampling. Two main model sampling
methods exist: simulation [13] and candidate selection
[5]. We concentrate on candidate selection due to its
higher accuracy [5]. The candidate selection method
identifies representative traces from the event log (i.e.,
log behaviour subset), and then computes their optimal
alignments to determine the corresponding model traces
(i.e., model behaviour subset). The accuracy of this
approximation depends on the quality of the selected log
traces [12]. However, existing log selection techniques
(e.g., random, frequency-based [5], K-Medoids [14])
often lack behavioural diversity and model representative-
ness (see Section II), leading to reduced accuracy in the
conformance approximation. Hence, there is significant
potential for improving the quality of model behaviour
subsets.

In this paper, we propose an enhanced model be-
haviour sampling method to select more representative
subsets and obtain more accurate approximate values.
First, we apply hierarchical clustering to the event
log using our proposed distance criterion. Then, we
propose two in-cluster methods to select typical traces
from each cluster, which are then used to construct
more representative model behaviour subsets. Finally, we
extend the existing cost lower bound algorithm to achieve
more accurate approximation results. The experimental
results show that our approach yields more accurate
approximations than existing baselines, though with an
increased approximation time.

The remainder of this paper is organized as follows.
Section II provides a motivating example to further
illustrate the research problem. Section III discusses
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Fig. 1. The Process Model discovered by Inductive Miner with infrequent threshold equals to 0.9.

related work in approximate conformance checking.
Section IV outlines the necessary preliminaries. In
Section V, we propose our method for constructing
model behaviour subsets using hierarchical clustering.
Section VI details the evaluation setup. Section VII
presents the experimental results, followed by Section
VIII. Finally, Section IX concludes the paper and presents
the limitations and future work.

II. MOTIVATING EXAMPLE

Research such as [5] and [15] has shown that
selecting more typical log traces lead to higher approxi-
mation accuracy. Thus, the key challenge is determining
which subset should be selected to improve approximate
accuracy. Existing log selection methods, such as the
frequency-based and K-medoids approaches, sometimes
lack sufficient log representativeness.

To illustrate the potential limitations of these methods,
we use a synthesized event log L. It contains 5,106 traces
consisting of 32,600 events and 12 trace variants, as
shown in Table 1.

TABLE 1. EVENT LOG

ID Trace Variant Freq ID Trace Variant Freq
0 ⟨a, b, c, d, f, e, g, h⟩ 1280 6 ⟨a, d, f, h⟩ 250
1 ⟨a, b, c, d, e, f, g, h⟩ 912 7 ⟨a, f, b, c⟩ 96
2 ⟨a, b, c, d, e, g, f, h⟩ 864 8 ⟨a, c, e, f, g⟩ 64
3 ⟨a, b, c, h⟩ 792 9 ⟨a, d, e, g, h⟩ 56
4 ⟨a, b, c, d, h⟩ 400 10 ⟨a, b, f, e, g, h⟩ 48
5 ⟨a, h⟩ 320 11 ⟨b, f, g⟩ 24

To discover the event log presented in Figure 1,
we applied the Inductive Miner algorithm [16] with
infrequent thresholds of 0.9.

Assuming that we select three variants to represent
the event log, i.e., the behavior subset consists of three
variants. Table II shows the behaviour subsets generated
by the frequency-based method, K-Medoids, and our
proposed methods (see Section V for details). The
frequency-based subsets show two key limitations:
a) Overestimation of Alignment Cost: Variant 5, ⟨a, h⟩,
can be perfectly replayed in the model with an alignment
cost of 0. But it is not included in our model behaviour

subset, aligning it would require at least 6 insertions (i.e.,
cost of 6), resulting in an overestimated approximate cost.
b) Lack of Structural Diversity: The selected model traces
⟨a, b, c, d, f, e, g, h⟩ and ⟨a, b, c, d, e, f, g, h⟩ differ only
in the order of e and f . This means that they repre-
sent essentially the similar structural path, potentially
overlooking other important paths in the process model.

Also, the K-Medoids method has drawbacks: it clus-
ters traces solely based on their control-flow information,
that is, syntactic difference. For example, the trace
⟨b, f, g⟩ in log behaviour subset (as shown in Table II)
may have significantly syntactic differences from other
traces but, due to its low frequency (only 24 occurrences),
it is still not enough to represent the model behaviour.

To address the issues, our approach proposed in
Section V effectively balances frequency and control-
flow information. Table II also shows the cost deviation.
It refers to the difference in alignment cost between
using model behaviour subset and optimal-alignment.
The values indicate that the model behaviours generated
by our methods significantly reduce the cost deviations
compared to vanilla methods.

TABLE 2. BEHAVIOUR SUBSETS CONSTRUCTED BY FOUR
METHODS

Method Subset Result Cost Deviation

Frequency-
based

Log Behaviour
ΣL = {⟨a, b, c, d, f, e, g, h⟩, ⟨a, b, c, d, e, f, g, h⟩,

7806
⟨a, b, c, d, e, g, f, h⟩}

Model Behaviour
ΣM = {⟨a, b, c, d, f, e, g, h⟩, ⟨a, b, c, d, e, f, g, h⟩,

⟨a, b, c, d, e, g, f, h⟩}

K-Medoids
Log Behaviour

ΣL = {⟨a, h⟩, ⟨a, b, c, d, e, g, f, h⟩,

6596
⟨b, f, g⟩}

Model Behaviour
ΣM = {⟨a, h⟩, ⟨a, b, c, d, e, g, f, h⟩,

⟨a, b, e, f, g, h⟩}

In-cluster
frequency

Log Behaviour ΣL = {⟨a, h⟩, ⟨a, b, c, d, f, e, g, h⟩, ⟨a, b, c, h⟩}
4698

Model Behaviour
ΣM = {⟨a, h⟩, ⟨a, b, c, d, f, e, g, h⟩

⟨a, b, c, h⟩}

In-cluster
medoid

Log Behaviour ΣL = {⟨a, d, f, h⟩, ⟨a, b, c, d, f, e, g, h⟩, ⟨a, b, c, h⟩}
4854

Model Behaviour
ΣM = {⟨a, d, h⟩, ⟨a, b, c, d, f, e, g, h⟩

⟨a, b, c, h⟩}

III. RELATED WORK

To cope with the complexity of alignment construc-
tion, approximation techniques have been developed
to balance result quality and computational cost. Early
studies explored replacing the A* algorithm with faster
algorithms[7], [17], [18], laying the foundation for a

www.ijacsa.thesai.org 2 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. XXX, No. XXX, 2014

more efficient alignment computation. For example,
Taymouri and Carmona [17], introducing an evolutionary
algorithm to enhance alignment approximations. Model
decomposition has also been investigated as an efficiency-
oriented approximation approach. The foundational work
demonstrated how breaking models into smaller and
more manageable parts can simplify alignment, although
it may not always result in optimal alignments [19],
[20]. Furthermore, the construction of automata capable
of aligning the log and the model has been explored
as another approximation technique [21], [22]. This
approach provides good approximations of the optimal
alignments in most cases. Recently, some researchers
have proposed using RNN-based neural networks to
obtain recall and precision metrics for event logs and
process models, demonstrating the potential of this
technique for conformance analysis [23], [24].

Reducing behaviour size is another promising strategy
for approximate conformance checking. One sampling
approach focuses on sampling the event log. For instance,
[25] proposes a trace sampling method, assuming that
a few log traces can estimate the conformance value.
However, it lacks upper and lower bounds for the
approximation and performs worse when the event log
contains many unique behaviors.

Another recent sampling approach targets model
behaviour. [5] introduced a model sampling method to
construct subsets of the model behaviour that represent
the entire process model, significantly reducing the
approximation time while largely maintaining accuracy.
The method also provides upper and lower bounds to
give some certainty of the approximation.

Hierarchical clustering is widely used in process min-
ing for its structural representativeness [26]. Furthermore,
[27] demonstrates how hierarchical clustering aids in
discovering a better model.

IV. PRELIMINARIES

This section presents the terminology and notation
for conformance checking to support the subsequent
sections. We use the basic definitions of Petri net, e.g.,
labeled Petri Net in [28].

Given a system net SN , ϕf (SN) is the set of all
complete firing sequences of SN and ϕv(SN) is the
set of all possible visible traces, i.e., complete firing
sequences starting in its initial marking and ending in
its final marking projected onto the set of observable
activities (not silent transitions, e.g., t3 in Figure 1).

To measure how a trace aligns to a process model,
moves are represented by pairs (a, t), where a is a log
activity, and t is a model transition. Legal moves can be:
log moves , model moves, or synchronous moves . Any
other combination is an illegal move.

Definition 1. (Alignment). Let σL ∈ L represent a
log trace and σM ∈ ϕf (SN) denote a complete firing

sequence of a system net SN . ALM is the set of legal
moves. An alignment of σL and σM is a sequence of
pairs γ ∈ A∗LM such that the projection on the first
element (ignoring ≫) yields σL and the projection on
the second element (ignoring ≫ and transition labels)
yields σM .

To quantify the costs of alignments we introduce a
cost function δ in Definition 2.

Definition 2. (Cost of Alignment). Cost function δ ∈
ALM → N assigns costs to legal moves. The cost of an
alignment γ ∈ A∗LM is the sum of all costs:

δ(γ) =
∑

(a,t)∈γ

δ(a, t).

The cost values assigned to log moves, model moves,
and synchronous moves are 1, 1, and 0, respectively.
Note that an alignment is considered optimal if it has
the minimum alignment cost.

Definition 3. (Optimal Alignment). Let L be an event
log and SN a system net where ϕv(SN) ̸= ∅.

• For σL ∈ L, we define:
ΓσL,SN ∈ {γ ∈ A∗LM | ∃σM ∈
ϕf (SN) is an alignment of σL and σM}.

• An alignment γ ∈ ΓσL,SN is optimal for trace
σL ∈ L and system net SN if for any alignment
γ′ ∈ ΓσL,M : δ(γ′) ≥ δ(γ).

• γSN ∈ A∗LM → A∗LM is a mapping that assigns
any log trace σL to an optimal alignment, i.e.,
γSN (σL) ∈ ΓσL,SN and γSN (σL) is an optimal
alignment.

Definition 4. (Levenshtein Edit Distance). As defined
by [29], the Levenshtein edit distance d(σ1, σ2) → N
represents the minimum number of edit operations
(i.e., insertions, deletions, and substitutions) required
to transform one sequence into another. For instance,
d(⟨a, b⟩, ⟨c, d⟩) = 2, where the two edit operations are
substitutions (a, c) and (b, d).

Definition 5. (Edit Distance Cost Function). We can
calculate the distance between two traces (or sequences)
faster by using a modified version of the Levenshtein
edit distance [30]. Let σ1, σ2 ∈ A∗ be two sequences of
activities. The Edit Distance Cost Function ∆(σ1, σ2)→
N is defined as the minimum number of edits (insertion
or deletion of activities) required to transform σ1 into
σ2.

Suppose that S is a set of sequences, Φ(σL, S) =
minσM∈S ∆(σL, σM ) returns the distance of the most
similar sequence in S. Let ϕv(SN) be the set of all
visible firing sequences in SN , and γSN (σ) be an
optimal alignment for sequence σ. It is possible to prove
that δS(γSN (σ)) = Φ(σ, ϕv(SN))[12].
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In the context of alignment, the edit distance function
can be used as a cost function δS for evaluating the mis-
alignment between a log trace σL and a model trace σM .
This cost function assigns a value corresponding to the
number of operations required to align the two sequences.
For example, ∆(⟨a, c, b, e, d⟩, ⟨a, b, c, a, d⟩) = 4 corre-
sponds to two deletions and two insertions.

Moreover, the alignment cost of a single trace can
be converted into a fitness value between 0 (poor
fitness, i.e., maximal costs) and 1 (perfect fitness, i.e.,
zero costs) using Equation 1 [5]. In this regard, we
normalize this cost relative to the worst case, with one
log move for each activity in the trace and one model
move for each transition in the model’s shortest path,
SPM = minσM∈ϕf

(|σM |). Here, the optimal alignment
cost, δ(γSN (σ)), can be replaced by an alternative cost
(e.g., edit distance cost) to obtain a corresponding fitness
value.

FitnessTrace(σL, SN) = 1− δS(γSN (σ))

|σL|+ SPM
(1)

Note that the overall fitness between the event log
and the system net is the weighted average of single
trace fitness values.

V. METHOD

In this section, we present the proposed conformance
approximation method. An overview of our approach is
shown in Figure 2. The method begins with a prepro-
cessing stage using hierarchical clustering techniques.
Next, two methods are proposed for constructing model
behaviour subsets: in-cluster frequency and in-cluster
medoid methods. Finally, the alignment approximation
process is explained.

A. Preprocess event log using hierarchical clustering

In this stage, we apply agglomerative hierarchical
clustering [31] on event logs. Specifically, we first
partition the event log based on trace variants to get
the trace variant subset Σσv . Then, we introduce the
normalized weighted Levenshtein distance to measure the
distance between these variants(see Definition 6) as a new
in-cluster distance criterion. This criterion considers both
frequency and control-flow information, alleviating the
problem with current log selection methods mentioned
in Section II. It is used to build a distance matrix, then
forming a dendrogram. By cutting-off the dendrogram,
we obtain the desired number of clusters. The framework
is illustrated in Figure 3.

Definition 6. (Normalized Weighted Levenshtein Dis-
tance). Let A∗ be the set of all possible sequences of
activities in A, and let σv1, σv2 be two trace variants
∈ A∗. The normalized weighted Levenshtein distance

between σv1 and σv2, where each trace variant has a
frequency f(σv1) and f(σv2), is defined as:

dweighted(σv1, σv2) =
f(σv1) · f(σv2) · dN (σv1, σv2)

max{f(σv1)2, f(σv2)2}
(2)

where the normalized Levenshtein distance dN (σv1, σv2)
is given by:

dN (σv1, σv2) =
d(σv1, σv2)

max{|σv1|, |σv2|}
(3)

Here, dN (σv1, σv2) = 0 means the two traces are exactly
the same, and dN (σv1, σv2) = 1 means the two traces
are completely different.

Definition 7. (Distance Matrix). Let σv1, σv2, . . . , σvi ∈
A∗ represent all trace variants in event log L. The matrix
D(L) is defined as, :

D(L) =


0 d(σv1, σv2) · · · d(σv1, σvi)

d(σv2, σv1) 0 · · · d(σv2, σvi)
...

...
. . .

...
d(σvi, σv1) d(σvi, σv2) · · · 0


(4)

where d is the normalized weighted Levenshtein distance
function.

B. Constructing Model Behaviour

In this stage, we first propose two in-cluster methods
to get log behaviour subset ΣL from the generated
clusters and transform it into the model behaviour subset
ΣM . Specifically,
a) Candidate selection: After preprocessing, we obtain
several clusters, each representing different behaviours
within the model. The following question is how to
choose the most representative traces from each cluster to
construct a more effective log behaviour subset. Existing
approaches in approximate conformance checking often
rely on either random sampling or frequency-based
selection without considering control-flow similarity,
which may lead to biased or suboptimal subsets when
the frequency distribution is highly imbalanced or when
rare but structurally central behaviours exist. To address
this, we extend the ideas of frequency-based and medoid
selection by introducing two in-cluster methods — the
in-cluster frequency method and the in-cluster medoid
method — designed to balance efficiency and represen-
tativeness.

The in-cluster frequency method selects, from each
cluster, the trace variant with the highest frequency
of occurrence. This approach assumes that the most
common behaviour within a cluster is also the most rep-
resentative of that cluster’s behaviour. Its main advantage
lies in computational efficiency, as it does not require
computing pairwise distances between traces. Compared
to methods that sample traces uniformly at random [25],
the frequency method reduces the risk of including low-
relevance traces, especially in large-scale logs.
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Fig. 2. Overview of our approach

The in-cluster medoid method, in contrast, selects
the trace variant that minimises the total Levenshtein
distance to all other traces in the cluster, effectively
identifying the “central” trace in terms of control-
flow similarity. Specifically, it computes the pairwise
Levenshtein distances between all traces in each cluster,
then constructs a distance matrix and obtains the medoid
trace (see Definition 8). This ensures that the selected
trace best represents the structural characteristics of its
cluster, even if it is not the most frequent. Compared to
traditional frequency-only methods, the medoid approach
mitigates the bias towards dominant behaviours and is
more robust when clusters contain diverse but equally
important behaviours.
b) Optimal-alignment: In this step, we align ΣL with
process model to construct the ΣM , that is, we compute
the optimal alignments of selected traces in the event
log and finding the corresponding model traces for these
alignments.

Table 3 shows three clusters generated from
the event log in Table 1. For example, apply-
ing the in-cluster frequency method to cluster 2
yields ⟨a, b, c, h⟩792, the most frequent trace. Re-
peating this for each cluster, we obtain ΣL =
{⟨a, b, c, d, f, e, g, h⟩1280, ⟨a, b, c, h⟩792, ⟨a, h⟩320}. We
then align ΣL with the process model as shown in Figure

1, resulting in ΣM .Note that ΣL and ΣM are same in
this example, as all traces can be fully replayed in the
model.

TABLE 3. THE CLUSTERS GENERATED FROM THE EXAMPLE
LOG PROVIDED IN TABLE 1

Cluster ID Traces in each cluster
1 {⟨a, b, c, d, f, e, g, h⟩1280, ⟨a, b, c, d, e, f, g, h⟩912, ⟨a, b, c, d, e, f, g, h⟩864}
2 {⟨a, b, c, h⟩792, ⟨a, b, c, d, h⟩400, ⟨a, f, b, c⟩96}

3
{⟨a, h⟩320, ⟨a, d, h⟩250, ⟨a, c, e, f, g⟩64,

⟨a, d, e, g, h⟩56, ⟨a, b, f, e, g, h⟩48, ⟨b, f, g⟩24}

The specific algorithm steps for proposed methods
are outlined in Algorithms 1 and 2.

Definition 8. (In-cluster Medoid). Let L′ be a clustered
sublog, n denote the number of trace variants in L′, and
D(L′) be the distance matrix of L′. The trace σj =
argminσj∈L′

∑
i∈[1,n] d(σi, σj) represents the medoid

trace of sublog L′.

C. Computing Alignment Approximation

After constructing MB , we use it to approximate
alignments for the traces in L−LC , where LC refers to
the frequency-based trace variants used to build ΣL. The
actual alignment fitness for the variants in ΣL has already
been computed during the construction of MB , so we can
directly use this value for more accurate approximations.
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Fig. 3. Preprocessing workflow for hierarchical clustering

Algorithm 1 In-cluster Medoid Method
Input: Event log L; Process model M .
Output: Model behaviour subset ΣM .

1: Initialize log behaviour subset: ΣL ← ∅
2: Initialize model behaviour subset: ΣM ← ∅
3: Partition L based on variants into Σσv

4: Cluster Σσv
into k clusters {Σσv1

,Σσv2
, . . . ,Σσvk

}
using hierarchical clustering

5: for i = 1 to k do
6: Compute pairwise Levenshtein distances between

all variants in Σσvi

7: Construct distance matrix D(Σσvi
)

8: Find the medoid trace σ
(i)
L in Σσvi

:

σ
(i)
L = arg min

σ∈Σσvi

∑
σ′∈Σσvi

d(σ, σ′)

9: Update log behaviour subset: ΣL ← ΣL∪{σ(i)
L }

10: end for
11: for each σ

(i)
L ∈ ΣL do

12: Compute optimal alignment γopt
SN between σ

(i)
L

and M
13: Map to model trace: σ(i)

M ← λSN (σ
(i)
L )

14: Update model behaviour subset: ΣM ← ΣM ∪
{σ(i)

M }
15: end for
16: return ΣM

At this stage, we calculate the alignment approximations
for the remaining variants.

Typically, the actual fitness is calculated using
standard alignment costs. However, for the remaining
variants, we use the edit distance cost function ∆ (see
Definition 5) to estimate fitness. This method provides
guaranteed upper and lower bounds for the alignment
cost, instead of exact values [5] (see Lemma 1 and

Algorithm 2 In-cluster Frequency Method
Input: Event log L; Process model M .
Output: Model behaviour subset ΣM .

1: Initialize log behaviour subset: ΣL ← ∅
2: Initialize model behaviour subset: ΣM ← ∅
3: Partition L based on variants into Σσv

4: Cluster Σσv
into k clusters {Σσv1

,Σσv2
, . . . ,Σσvk

}
using hierarchical clustering

5: for i = 1 to k do
6: Let Σσvi

denote the i-th cluster of variants
7: Find the most frequent variant σ(i)

L in Σσvi
:

σ
(i)
L = arg max

σ∈Σσvi

f(σ)

8: Update log behaviour subset: ΣL ← ΣL∪{σ(i)
L }

9: end for
10: for each σ

(i)
L ∈ ΣL do

11: Compute optimal alignment γopt
SN between σ

(i)
L

and M
12: Map to model trace: σ(i)

M ← λSN (σ
(i)
L )

13: Update model behaviour subset: ΣM ← ΣM ∪
{σ(i)

M }
14: end for
15: return ΣM

Lemma 2 below).

Fitness(L, SN) =

∑
σ∈LC

f(σ)× FitnessApproximate(σ, SN)∑
σ∈L f(σ)

+

∑
σ∈L−LC

f(σ)× FitnessActual(σ, SN)∑
σ∈L f(σ)

(5)

Lemma 1 (Alignment Cost Upper Bound). Let σL ∈ U∗A
be a log trace and σM ∈ ϕv(SN) be a visible firing
sequence of SN . We have δS(γSN (σL)) ≤ ∆(σL, σM ),
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where γSN (σL) is the optimal alignment.

Proof: The proof is provided in Appendix A and
demonstrates how the edit distance guarantees this upper
bound.

Simply put, if we align trace variant 4 ⟨a, b, c, d, h⟩
from Table 1 with σL from the in-cluster frequency
subset in Table II, the alignment cost is 1 (i.e., removing
”d”). However, since σM is a subset of the full model,
the actual cost could be smaller or equal. Thus, we use
1 as the upper bound for this variant.

Lemma 2 (Alignment Cost Lower Bound). Let
SPM = minσM∈ϕv(SN) |σM | and LPM =
maxσM∈ϕv(SN) |σM |, representing the shortest and
longest paths in the process model M . σL⌈Av(SN) and
κ(σL) are as defined in Definition 9.

For any log trace σL, if |σL⌈Av(SN)| < SPM , the
alignment cost lower bound is SPM − |σL⌈Av(SN)|+
κ(σL); if |σL⌈Av(SN)| > LPM , the lower bound
is |σL⌈Av(SN)| − LPM + κ(σL); if SPM ≤
|σL⌈Av(SN)| ≤ LPM , the lower bound is κ(σL).

Proof: The proof is provided in Appendix B.

The cost lower bound is the minimum edit operations
needed to transform σL into σM . We refine this algorithm
using activity projection (see Definition 9) to improve
approximation accuracy. Existing methods compare log
trace length directly with the model’s range, potentially
yielding errors if irrelevant activities are present. For
instance, in Figure 1, a trace ⟨a, x⟩ might seem aligned
if its length falls within the model’s shortest (SPM=2)
and longest paths (LPM=8), even though x is not in
the model, resulting in a miscalculated cost of 0. Our
algorithm removes non-model activities (e.g., removing x
from ⟨a, x⟩ to form ⟨a⟩) before comparing trace lengths.
This adjustment yields a more accurate cost of 1 rather
than 0, resulting in a smaller upper fitness and tighter
bound width.

These bounds are then used to compute the corre-
sponding upper and lower fitness bounds (with the cost
upper bound giving the fitness lower bound, and vice
versa) using Equation 1. The computations for the fitness
bounds are provided in Algorithm 3 and 4. The average
of these bounds provides the approximate fitness. Once
we compute the approximate fitness for each remaining
variant, we take the weighted average of these values
along with the previously computed actual fitness to get
the overall approximate fitness for the entire event log,
as shown in Equation 5.

Definition 9 (Activity Projection). Let Av(SN) be the
set of unique observable activities in the system net
SN . For any log trace σL, let σL⌈Av(SN) represent the
projection of σL onto Av(SN), which means the set of
activities in σL that also appear in the model. Define
κ(σL) = |σL|− |σL⌈Av(SN)| as the number of activities
in σL that are not present in the model.

For example, let σL = ⟨a, b, x⟩ be a log trace
and the observable activities of the system net be
Av(SN) = {a, b, c, d, e}. Projecting σL onto Av(SN)
results in σL⌈Av(SN)= ⟨a, b⟩, as x is not part of
Av(SN). Therefore, κ(σL) = |σL| − |σL⌈Av(SN)| =
3− 2 = 1, indicating one activity in σL is not present
in the model.

Algorithm 3 Fitness lower bound computation
Input: Event log L; Optimal-aligned Log LC ; Model
behaviour subset ΣM .
Output: Lower bound fitness L fitness(σL,M).

1: for each σL ∈ L− LC do
2: Φ(σL,ΣM ) // Compute minimun edit distance

cost
3: L fitness(σL,M)← 1− Φ(σL,ΣM )

|σL|+minσM∈ϕv(SN)(|σM |)

4: end for
5: return L fitness(σL,M)

Algorithm 4 Fitness upper bound computation
Input: Event log L; Optimal-aligned Log LC ; Model
behaviour subset ΣM .
Output: Upper bound fitness U fitness(σL,M).

1: SPM ← minσM∈ϕv(SN) |σM | // Shortest path
2: LPM ← maxσM∈ϕv(SN) |σM | // Longest path
3: for each σL ∈ L− LC do
4: Project σL onto SN : σL⌈Av(SN)

5: Compute κ(σL) = |σL| − |σL⌈Av(SN)|
6: if |σL⌈Av(SN)| < SPM then
7: U fitness(σL,M) ← 1 −

SPM−|σL⌈Av(SN)|+κ(σL)

|σL|+minσM∈ϕv(SN)(|σM |)

8: else if |σL⌈Av(SN)| > LPM then

9: U fitness(σL,M)← 1−
|σL⌈Av(SN)|−LPM+κ(σL)

|σL|+minσM∈ϕv(SN)(|σM |)

10: else
11: U fitness(σL,M)← 1− κ(σL)

|σL|+minσM∈ϕv(SN)(|σM |)

12: end if
13: end for
14: return U fitness(σL,M)

VI. EVALUATION

In this section, we assess the accuracy and time
performance of our proposed log selection methods
compared to frequency-based and K-Medoids techniques,
and evaluate their differences in accuracy and time
against normal alignment. Note that the comparison
between model behaviour sampling and other approxi-
mate methods has been discussed in [5], we focus here
on comparisons with the baselines of model behaviour
sampling. First, we briefly describe the implementation
(Section VI-A) and experimental setup (Section VI-B),
followed by a discussion of the experimental results
(Section VII).

A. Implementation

Our implementation consists of two steps: first,
we implemented the algorithms described in Sections
V-A and V-B in Python, to generate log behaviour
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subsets from event logs. Specifically, we extended the
pm4py.algo.clustering package in PM4py [32] by intro-
ducing the normalized weighted Levenshtein distance
(Definition 6), to perform hierarchical clustering. And
implemented two proposed in-cluster methods to get the
log behaviour subset based on the clustering result. In
the second step, we used an existing plugin in ProM [33],
Conformance Log to Log Approximation [34], with the
generated model behaviour subset and the original event
log as input, obtaining approximate fitness bounds and
values. For the baselines, we used the implementation
proposed by Fanisani [5]. For normal alignment, we
used PM4py to compute the time and fitness values.
The source code and experimental results is available on
Github 1.

B. Experimental Setup

Our experiments were based on six real event logs,
with basic information about these event logs given
in Table 4. Here, Uniqueness refers to Variant#

Trace# . A
Uniqueness value close to 1 indicates that almost all
traces are different, e.g., Sepsis. For process discovery,
we used Inductive Miner infrequent algorithm [35] with
infrequent thresholds of 0.4 to get the process model.
Two log selection methods, frequency-based sampling, K-
Medoids clustering, were used as baselines to compare
with our proposed methods, i.e., In-cluster frequency
method and In-cluster medoid method. Furthermore,
we set the selection percentage to 10%, 20%, 30%,
40%, and 50%, representing the ratio of the selected
variants to the total number of variants in the event
logs. Our experiment was repeated four times since the
conformance approximation time is non-deterministic.
Finally, we performed the experiments on a computer
with Apple M1 (8 cores), 8 GB RAM running macOS.

TABLE 4. THE REAL-LIFE EVENT LOGS USED IN THE
EXPERIMENTS

Event Log Activities # Traces # Variants # Uniqueness
BPIC2012 [36] 25 13087 4366 0.33

BPIC2013-closed problems [37] 4 1487 183 0.12
BPIC2016-Questions [38] 8 21533 2261 0.10

BPIC2017 [39] 28 31509 15930 0.51
Spesis [40] 18 1050 846 0.81

RTFMP [41] 13 150370 231 0.01

1) Evaluation Metrics: To measure approxima-
tion accuracy, we used Approximate Error, de-
fined as ApproximateError = |ActualF itness −
ApproximateF itness|, where a value closer to 0 indi-
cates higher accuracy. Additionally, we assess the Bound
Width as BoundWidth = U fitness − L fitness,
with a smaller width indicating tighter bounds and a
more accurate approximation.

We used the Performance Improvement (PI) metric,
defined as PI = Actual Conformance Time

Approximate Conformance Time to assess
time performance. Actual Conformance Time refers to

1https://github.com/lvyl9909/Approximate-Conformance-Checkin
g-using-Hierarchical-Clustering.git

the time needed to compute normal alignment, while
Approximate Conformance Time includes the total time
for the approximation. A PI value greater than 1
indicates the approximation is faster than the actual
conformance computation. Preprocessing time (e.g.,
hierarchical clustering) is included in the approximate
conformance time.

VII. RESULT

Table 5 presents the Actual Fitness and Approximate
Fitness, Approximate Error, and PI for four selection
methods using 20% of the variants in six event logs. For
each metric in a given row, the best value is highlighted
in bold. The results show that the proposed in-cluster
methods achieve the highest fitness and the lowest
approximate error in most cases, indicating superior
accuracy compared to the baselines. In terms of PI, the
frequency-based method consistently achieves the highest
values, reflecting its shorter approximate time. Our
complete experimental data is provided in Appendix B.

Figure 4 shows that both Approximate Error and
Bound Width decrease as the selection percentages
increase. Here, Bound Width is represented by bars, and
Approximate Error by lines, illustrating the improvements
in these metrics as the selection percentage increases. Our
in-cluster methods consistently achieve tighter bounds
at each selection percentage. Notably, at a selection
50% in the BPIC2017 log, the bound widths of the
baseline are around 0.05, while our methods reduce
this by 40% to 0.03. Furthermore, in all data sets with
different selection percentages, the in-cluster frequency
method shows an average improvement of 19.1% in
Approximate Error compared to the frequency-based
method, while the in-cluster medoid method achieves
an average improvement of 27.6% compared to the
K-Medoid method. Moreover, the in-cluster frequency
method often produces tighter bounds than in-cluster
medoid method, especially on low uniqueness logs like
BPIC2016-Questions, where selecting the most frequent
trace is more effective than clustering. However, on
high Uniqueness logs like Sepsis, in-cluster medoid
method provides more accurate approximations. In Figure
5, we compare the time performance of different log
selection methods and their improvement over normal
alignment. Note that a value of 1 represents the normal
alignment time. Consistent with the results in Table 5, the
frequency method usually yields the highest performance
improvement, followed by the K-Medoids method. Our
methods are less efficient compared to these baselines,
particularly on datasets with higher Uniqueness values.

VIII. DISCUSSION

Across Table 5 and Figure 4, our in-cluster methods
consistently achieve higher fitness, lower approximate
error, and tighter bounds than the baselines, with the
in-cluster frequency method performing better on low-
Uniqueness logs (e.g., BPIC2016-Questions) and the
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TABLE 5. APPROXIMATE RESULT COMPARISONS (20% SELECTION) FOR FOUR DIFFERENT SELECTION METHODS.

Event Log Actual Frequency K-Medoids In-cluster freq. In-cluster medoid
Fit. Err. PI Fit. Err. PI Fit. Err. PI Fit. Err. PI

BPIC2012 0.9995 0.9741 0.0254 61.8496 0.9761 0.0234 41.1727 0.9788 0.0207 25.6113 0.9806 0.0189 24.8483
BPIC2013-closed problems 0.9997 0.9860 0.0138 11.8502 0.9711 0.0286 5.8732 0.9894 0.0103 1.6728 0.9875 0.0122 1.6443
BPIC2016-Questions 0.9997 0.9923 0.0074 45.3310 0.9463 0.0535 30.4731 0.9944 0.0053 13.1973 0.9565 0.0432 12.2026
BPIC2017 0.9995 0.9690 0.0305 11.8531 0.9700 0.0296 9.7231 0.9749 0.0246 1.9688 0.9747 0.0248 1.8838
Road 0.9999 0.9997 0.0002 15.7220 0.9996 0.0004 11.7262 0.9998 0.0001 7.5686 0.9995 0.0004 6.7700
Sepsis 0.9880 0.9202 0.0679 53.4338 0.9202 0.0678 44.9919 0.9313 0.0567 22.9238 0.9319 0.0561 20.0751

Fig. 4. The performance differences of different selection strategies on band width and approximate error.

in-cluster medoid method excelling on high-Uniqueness
logs such as Sepsis, highlighting a key advantage of our
approach over the baselines—improved approximation
accuracy. Figure 5 shows that our methods have larger ap-
proximation times. This is because hierarchical clustering
requires step-by-step merging and evaluating all possible
cluster combinations, which increases preprocessing
time compared to baselines. Nevertheless, they remain
significantly faster than the normal alignment-based
approach, keeping approximation times within acceptable
limits while delivering higher accuracy—making them
well-suited for large-scale processes where neither a
quick, coarse estimate nor weeks of exact computation is
desirable. Overall, our results indicate a clear trade-off:
the proposed methods bring the approximations closer
to the actual values at the cost of some additional but
acceptable preprocessing time.

IX. CONCLUSION

In this paper, we propose an enhanced model be-
haviour sampling method using hierarchical clustering to

construct more representative model behaviour subsets.
By incorporating both frequency and control-flow infor-
mation from the event log, our approach more effectively
captures the model’s behaviour, leading to improved
approximation accuracy. Experimental results show that
our method produces approximations that are on average
over 19.1% closer to the actual alignment values than
baseline methods, though it requires more computation
time.

A potential limitation of this study is the lack of an
explicit quantification of how much ”increased” time
would be acceptable for the ”improvement” in accuracy,
which is important to evaluate the practical utility of
the method under different application scenarios. As a
next step, we plan to conduct a systematic, quantitative
analysis of the accuracy–time trade-off. Based on it, an
incremental approximation tool could be developed to
increase the size of model behaviour during the time,
allowing the user to decide when the accuracy is enough.
In addition, we plan to apply a time-optimized hierar-
chical clustering algorithm to reduce the approximation
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Fig. 5. The performance improvement using different methods in six event logs

time of our method. Furthermore, exploring how to make
use of the distribution information (e.g., Uniqueness) in
the event log to choose a better approximate method is
also a direction for future research.
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APPENDIX

A. Proof of Alignment Cost Upper Bound

Proof: We have shown that minσM∈S ∆(σL, σM ) =
δS(γSN (σL)) in Definition 5, so ∆(σL, σM ) ≥
δS(γSN (σL)). Therefore, if δS(γSN (σL)) >
∆(σL, σM ), γSN (σL) is not an optimal alignment.
Consequently, for any MB ⊆ ϕv(SN), Φ(σL,MB)
returns an upper bound for the cost of optimal alignment
[5].

B. Proof of Alignment Cost Lower Bound

Proof: When |σL⌈Av(SN)| < SPM , at least
SPM − |σL⌈Av(SN)| insertions are needed. Adding
the initial alignment cost, the total minimum alignment
cost is |SPM − σL⌈Av(SN)|+ |κ(σL)|. Similarly, when
|σL⌈Av(SN)| > LPM , at least |σL⌈Av(SN)| − LPM
deletions are required. Thus, the total alignment cost
is |σL⌈Av(SN)−LPM | + |κ(σL)|. When SPM ≤
|σL⌈Av(SN)| ≤ LPM , no insertions or deletions are
needed, so the alignment cost is |κ(σL)|.

www.ijacsa.thesai.org 11 | P a g e

https://arxiv.org/abs/2103.13315
https://arxiv.org/abs/2103.13315


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. XXX, No. XXX, 2014

TABLE 6: Experimental results for datasets.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2012 0.9995 35400000

10%

Approximate
fitness

Lower
Bound 0.9167 0.9371 0.9368 0.9416

Approximate
fitness 0.9583 0.9685 0.9684 0.9708

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0412 0.0310 0.0311 0.0287

Band
Width 0.0833 0.0629 0.0632 0.0584

Preprocessing
Time (ms) / / 1219923 1259201

Approximate
Time (ms) 411778 439928 25030 26102

Total Approximate
Time (ms) 411778 439928 1244953 1285303

PI 85.9687 80.4677 28.4348 27.5421

20%

Approximate
fitness

Lower
Bound 0.9482 0.9522 0.9576 0.9612

Approximate
fitness 0.9741 0.9761 0.9788 0.9806

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0254 0.0234 0.0207 0.0189

Band
Width 0.0518 0.0478 0.0424 0.0388

Preprocessing
Time (ms) / / 1342972 1392321

Approximate
Time (ms) 572356 859792 39232 32323

Total Approximate
Time (ms) 572356 859792 1382204 1424644

PI 61.8496 41.1727 25.6113 24.8483

30%

Approximate
fitness

Lower
Bound 0.9618 0.9629 0.9688 0.9702

Approximate
fitness 0.9809 0.9814 0.9844 0.9851

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0186 0.0181 0.0151 0.0144

Band
Width 0.0382 0.0371 0.0312 0.0298

Preprocessing
Time (ms) / / 1423219 1529312

Approximate
Time (ms) 702244 1186892 41992 42223

Total Approximate
Time (ms) 702244 1186892 1465211 1571535

PI 50.4098 29.8258 24.1603 22.5257

40%

Approximate
fitness

Lower
Bound 0.9681 0.9690 0.9756 0.9730

Approximate
fitness 0.9841 0.9845 0.9878 0.9865

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0155 0.0150 0.0117 0.0130

Band
Width 0.0319 0.0310 0.0244 0.0270

Preprocessing
Time (ms) / / 1591211 1730030

Approximate
Time (ms) 1229401 1480757 41503 49020

Total Approximate
Time (ms) 1229401 1480757 1632714 1779050

PI 28.7945 23.9067 21.6817 19.8983

50%

Approximate
fitness

Lower
Bound 0.9745 0.9752 0.9802 0.9888

Approximate
fitness 0.9873 0.9876 0.9901 0.9944

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0123 0.0119 0.0094 0.0051

Band
Width 0.0255 0.0248 0.0198 0.0112

Preprocessing
Time (ms) / / 1823900 2102097

Approximate
Time (ms) 1863573 1971131 42826 43503

Total Approximate
Time (ms) 1863573 1971131 1866726 2145600

PI 18.9958 17.9592 18.9637 16.4989
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TABLE 6: Experimental results for datasets.

Table 6 continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2013-incident 0.9997 135400

10%

Approximate
fitness

Lower
Bound 0.9559 0.9025 0.9610 0.9560

Approximate
fitness 0.9780 0.9513 0.9805 0.9780

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0218 0.0485 0.0192 0.0217

Band
Width 0.0441 0.0975 0.0390 0.0440

Preprocessing
Time (ms) / / 69233 70923

Approximate
Time (ms) 4200 19572 2033 2992

Total Approximate
Time (ms) 4200 19572 71266 73915

PI 32.2381 6.9180 1.8999 1.8318

20%

Approximate
fitness

Lower
Bound 0.9719 0.9422 0.9788 0.9750

Approximate
fitness 0.9860 0.9711 0.9894 0.9875

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0138 0.0286 0.0103 0.0122

Band
Width 0.0281 0.0578 0.0212 0.0250

Preprocessing
Time (ms) / / 78012 79232

Approximate
Time (ms) 11426 23054 2932 3111

Total Approximate
Time (ms) 11426 23054 80944 82343

PI 11.8502 5.8732 1.6728 1.6443

30%

Approximate
fitness

Lower
Bound 0.9795 0.9554 0.9860 0.9810

Approximate
fitness 0.9898 0.9777 0.9930 0.9905

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0100 0.0220 0.0067 0.0092

Band
Width 0.0205 0.0446 0.0140 0.0190

Preprocessing
Time (ms) / / 81203 85003

Approximate
Time (ms) 17294 27553 3504 4092

Total Approximate
Time (ms) 17294 27553 84707 89095

PI 7.8293 4.9142 1.5985 1.5197

40%

Approximate
fitness

Lower
Bound 0.9839 0.9612 0.9902 0.9850

Approximate
fitness 0.9920 0.9806 0.9951 0.9925

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0078 0.0191 0.0046 0.0072

Band
Width 0.0161 0.0388 0.0098 0.0150

Preprocessing
Time (ms) / / 89129 91892

Approximate
Time (ms) 27133 32868 3932 3902

Total Approximate
Time (ms) 27133 32868 93061 95794

PI 4.9902 4.1195 1.4550 1.4134

50%

Approximate
fitness

Lower
Bound 0.9875 0.9825 0.9920 0.9879

Approximate
fitness 0.9938 0.9913 0.9960 0.9940

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0060 0.0085 0.0037 0.0058

Band
Width 0.0125 0.0175 0.0080 0.0121

Preprocessing
Time (ms) / / 95002 104023

Approximate
Time (ms) 34006 41028 4002 4350

Total Approximate
Time (ms) 34006 41028 99004 108373

PI 3.9817 3.3002 1.3676 1.2494
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TABLE 6: Experimental results for datasets.

Table 6 continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2016-Questions 0.9997 5200690

10%

Approximate
fitness

Lower
Bound 0.9679 0.8867 0.9680 0.8911

Approximate
fitness 0.9840 0.9434 0.9840 0.9455

Upper
Bound 1.0000 1.0000 0.9999 0.9999

Approximation
Error 0.0158 0.0564 0.0158 0.0542

Band
Width 0.0321 0.1133 0.0319 0.1088

Preprocessing
Time(ms) / / 359923 389454

Approximate
Time(ms) 47607 61807 2715 1551

Total Approximate
Time(ms) 47607 61807 362638 391005

PI 109.2421 84.1440 14.3413 13.3008

20%

Approximate
fitness

Lower
Bound 0.9845 0.8925 0.9888 0.9130

Approximate
fitness 0.9923 0.9463 0.9944 0.9565

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0074 0.0535 0.0053 0.0432

Band
Width 0.0155 0.1075 0.0112 0.0870

Preprocessing
Time(ms) / / 390239 421292

Approximate
Time(ms) 114727 170665 3832 4902

Total Approximate
Time(ms) 114727 170665 394071 426194

PI 45.3310 30.4731 13.1973 12.2026

30%

Approximate
fitness

Lower
Bound 0.9874 0.9087 0.9920 0.9309

Approximate
fitness 0.9937 0.9544 0.9960 0.9655

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0060 0.0454 0.0037 0.0343

Band
Width 0.0126 0.0913 0.0080 0.0691

Preprocessing
Time(ms) / / 448922 489322

Approximate
Time(ms) 176359 266266 6020 6334

Total Approximate
Time(ms) 176359 266266 454942 495656

PI 29.4892 19.5319 11.4315 10.4925

40%

Approximate
fitness

Lower
Bound 0.9896 0.9114 0.9940 0.9440

Approximate
fitness 0.9948 0.9557 0.9970 0.9720

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0049 0.0440 0.0027 0.0277

Band
Width 0.0104 0.0886 0.0060 0.0560

Preprocessing
Time(ms) / / 483200 530239

Approximate
Time(ms) 280456 325313 9910 10355

Total Approximate
Time(ms) 280456 325313 493110 540594

PI 18.5437 15.9867 10.5467 9.6203

50%

Approximate
fitness

Lower
Bound 0.9913 0.9294 0.9960 0.9503

Approximate
fitness 0.9957 0.9647 0.9980 0.9752

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0060 0.0085 0.0037 0.0058

Band
Width 0.0125 0.0175 0.0080 0.0121

Preprocessing
Time(ms) / / 566660 602030

Approximate
Time(ms) 395799 445163 15330 14340

Total Approximate
Time(ms) 395799 445163 581990 616370

PI 13.1397 11.6827 8.9360 8.4376
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TABLE 6: Experimental results for datasets.

Table 6 continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

BPIC2017 0.9995 180829300

10%

Approximate
fitness

Lower
Bound 0.9332 0.9381 0.9454 0.9450

Approximate
fitness 0.9666 0.9691 0.9726 0.9725

Upper
Bound 1.0000 1.0000 0.9997 1.0000

Approximation
Error 0.0329 0.0305 0.0270 0.0270

Band
Width 0.0668 0.0619 0.0543 0.0550

Preprocessing
Time (ms) / / 86490212 87983292

Approximate
Time (ms) 4049416 4399280 400366 509232

Total Approximate
Time (ms) 4049416 4399280 86890578 88492524

PI 44.6556 41.1043 2.0811 2.0434

20%

Approximate
fitness

Lower
Bound 0.9380 0.9399 0.9497 0.9493

Approximate
fitness 0.9690 0.9700 0.9749 0.9747

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0305 0.0296 0.0247 0.0249

Band
Width 0.0620 0.0601 0.0503 0.0507

Preprocessing
Time(ms) / / 91423432 95431122

Approximate
Time(ms) 15255832 18597920 424210 561543

Total Approximate
Time(ms) 15255832 18597920 91847642 95992665

PI 11.8531 9.7231 1.9688 1.8838

30%

Approximate
fitness

Lower
Bound 0.9431 0.9420 0.9510 0.9512

Approximate
fitness 0.9715 0.9710 0.9755 0.9756

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0280 0.0285 0.0240 0.0239

Band
Width 0.0569 0.0580 0.0490 0.0488

Preprocessing
Time(ms) / / 95294232 99874342

Approximate
Time(ms) 13089388 16606568 502321 424931

Total Approximate
Time(ms) 13089388 16606568 95796553 100299273

PI 13.8150 10.8890 1.8876 1.8029

40%

Approximate
fitness

Lower
Bound 0.9481 0.9480 0.9575 0.9564

Approximate
fitness 0.9741 0.9740 0.9788 0.9782

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0255 0.0255 0.0208 0.0213

Band
Width 0.0519 0.0520 0.0425 0.0436

Preprocessing
Time(ms) / / 99034313 100293122

Approximate
Time(ms) 16294010 18807577 582312 510124

Total Approximate
Time(ms) 16294010 18807577 99616625 100803246

PI 11.0979 9.6147 1.8153 1.7939

50%

Approximate
fitness

Lower
Bound 0.9528 0.9527 0.9682 0.9691

Approximate
fitness 0.9764 0.9764 0.9841 0.9846

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0231 0.0232 0.0154 0.0150

Band
Width 0.0472 0.0473 0.0318 0.0309

Preprocessing
Time(ms) / / 108224313 119901232

Approximate
Time(ms) 20183838 22539508 391222 454002

Total Approximate
Time(ms) 20183838 22539508 108615535 120355234

PI 8.9591 8.0228 1.6649 1.5025
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TABLE 6: Experimental results for datasets.

Table 6 continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

RTFMP 0.9999 130430

10%

Approximate
fitness

Lower
Bound 0.9987 0.9975 0.9989 0.9980

Approximate
fitness 0.9994 0.9988 0.9993 0.9990

Upper
Bound 1.0000 1.0000 0.9997 1.0000

Approximation
Error 0.0006 0.0011 0.0006 0.0009

Band
Width 0.0013 0.0025 0.0008 0.0020

Preprocessing
Time(ms) / / 10585 11021

Approximate
Time(ms) 8986 15555 2901 3531

Total Approximate
Time(ms) 8986 15555 13486 14552

PI 14.5148 8.3851 9.6715 8.9630

20%

Approximate
fitness

Lower
Bound 0.9994 0.9991 0.9994 0.9990

Approximate
fitness 0.9997 0.9996 0.9997 0.9995

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0002 0.0004 0.0002 0.0004

Band
Width 0.0006 0.0009 0.0006 0.0010

Preprocessing
Time(ms) / / 14012 15432

Approximate
Time(ms) 8296 11123 3221 3834

Total Approximate
Time(ms) 8296 11123 17233 19266

PI 15.7220 11.7262 7.5686 6.7700

30%

Approximate
fitness

Lower
Bound 0.9994 0.9992 0.9994 0.9994

Approximate
fitness 0.9997 0.9996 0.9997 0.9997

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0002 0.0003 0.0002 0.0002

Band
Width 0.0006 0.0008 0.0006 0.0006

Preprocessing
Time(ms) / / 15236 22293

Approximate
Time(ms) 9831 10222 3232 3923

Total Approximate
Time(ms) 9831 10222 18468 26216

PI 13.2672 12.7597 7.0625 4.9752

40%

Approximate
fitness

Lower
Bound 0.9996 0.9993 0.9998 0.9996

Approximate
fitness 0.9998 0.9997 0.9999 0.9998

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0001 0.0003 0.0000 0.0001

Band
Width 0.0004 0.0007 0.0002 0.0004

Preprocessing
Time(ms) / / 17222 24422

Approximate
Time(ms) 10323 13123 4442 4232

Total Approximate
Time(ms) 10323 13123 21664 28654

PI 12.6349 9.9390 6.0206 4.5519

50%

Approximate
fitness

Lower
Bound 0.9998 0.9996 0.9998 0.9997

Approximate
fitness 0.9999 0.9998 0.9999 0.9999

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0000 0.0001 0.0000 0.0000

Band
Width 0.0002 0.0004 0.0002 0.0003

Preprocessing
Time(ms) / / 19203 30020

Approximate
Time(ms) 9050 10212 4301 5021

Total Approximate
Time(ms) 9050 10212 23504 35041

PI 14.4122 12.7722 5.5493 3.7222
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TABLE 6: Experimental results for datasets.

Table 6 continued.

Log
Actual
Fitness

Normal
Alignment

Time

Candidate
Percentage Parameter

Approximation Method
Baseline In-cluster medoid

Frequency K-Medoids
In-cluster
frequency

In-cluster
medoid

Sepsis 0.9880 3035200

10%

Approximate
fitness

Lower
Bound 0.7959 0.7965 0.8204 0.8100

Approximate
fitness 0.8980 0.8983 0.9101 0.9050

Upper
Bound 1.0000 1.0000 0.9997 1.0000

Approximation
Error 0.0901 0.0898 0.0780 0.0830

Band
Width 0.2041 0.2035 0.1793 0.1900

Preprocessing
Time(ms) / / 107478 110312

Approximate
Time(ms) 32599 28302 1902 2032

Total Approximate
Time(ms) 32599 28302 109380 112344

PI 93.1072 107.2433 27.7491 27.0170

20%

Approximate
fitness

Lower
Bound 0.8403 0.8404 0.8626 0.8638

Approximate
fitness 0.9202 0.9202 0.9313 0.9319

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0679 0.0678 0.0567 0.0561

Band
Width 0.1597 0.1596 0.1374 0.1362

Preprocessing
Time(ms) / / 130101 148903

Approximate
Time(ms) 56803 67461 2303 2289

Total Approximate
Time(ms) 56803 67461 132404 151192

PI 53.4338 44.9919 22.9238 20.0751

30%

Approximate
fitness

Lower
Bound 0.8701 0.8405 0.8730 0.8748

Approximate
fitness 0.9351 0.9203 0.9365 0.9374

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0530 0.0678 0.0515 0.0506

Band
Width 0.1299 0.1595 0.1270 0.1252

Preprocessing
Time(ms) / / 159232 162820

Approximate
Time(ms) 79763 60393 5201 5433

Total Approximate
Time(ms) 79763 60393 164433 168253

PI 38.0527 50.2575 18.4586 18.0395

40%

Approximate
fitness

Lower
Bound 0.8931 0.8959 0.9066 0.9015

Approximate
fitness 0.9466 0.9480 0.9533 0.9508

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0415 0.0400 0.0347 0.0373

Band
Width 0.1069 0.1041 0.0934 0.0985

Preprocessing
Time(ms) / / 182782 209212

Approximate
Time(ms) 102649 116824 6123 5736

Total Approximate
Time(ms) 102649 116824 188905 214948

PI 29.5687 25.9810 16.0673 14.1206

50%

Approximate
fitness

Lower
Bound 0.9112 0.9113 0.9255 0.9192

Approximate
fitness 0.9556 0.9557 0.9628 0.9596

Upper
Bound 1.0000 1.0000 1.0000 1.0000

Approximation
Error 0.0324 0.0324 0.0253 0.0284

Band
Width 0.0888 0.0887 0.0745 0.0808

Preprocessing
Time(ms) / / 209823 222011

Approximate
Time(ms) 126803 137461 3508 3769

Total Approximate
Time(ms) 126803 137461 213331 225780

PI 23.9363 22.0804 14.2277 13.4432
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