(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2014

Enhancing Approximate Conformance Checking
Accuracy with Hierarchical Clustering Model
Behaviour Sampling

Yilin Lyu
School of Computing and
Information System
The University of Melbourne
Parkville, Victoria 3010, Australia
Email: yillyul @student.unimelb.edu.au

Abstract—Conformance checking techniques evaluate
how well a process model aligns with an actual event
log. Existing methods, which are based on optimal trace
alignment, are computationally intensive. To improve
efficiency, a model sampling method has been proposed to
construct a subset of model behaviour that represents the
entire model. However, current model sampling techniques
often lack sufficient model representativeness, limiting their
potential to achieve optimal approximation accuracy. This
paper proposes new model behaviour sampling approaches
using hierarchical clustering to compute an approximation
closer to the exact result. This paper also refines the existing
upper bound algorithm for better approximation. Our
experiments on six real-world event logs demonstrate that
our method improves approximation accuracy compared
to state-of-the-art model sampling methods.

Keywords—Approximate conformance checking Model
behaviour sampling Hierarchical clustering Process mining

I. INTRODUCTION

Conformance checking is a set of process mining
functionalities aimed at identifying deviations between
the actual behaviour of the event log ("as-is”’) and the
modeled behaviour of the process model (“to-be”). It
facilitates further applications, such as model repair,
anomaly detection, and algorithm evaluation [1]. In
recent years, the alignment-based method [2] has become
the de facto standard for conformance checking in
the computation of conformance diagnostics, since it
always returns the most accurate deviations, known as
optimal alignment [3]. However, finding the optimal
alignment is an NP-hard problem [4]. As the complexity
of the log and model increases, the run-time complexity
of optimal alignment computation grows exponentially,
leading to extremely long computation times, sometimes
even taking several weeks. This makes them impractical
for real-world applications, especially large-scale event
logs. Moreover, in certain cases, an exact conformance
value is not necessary, such as when performing a
preliminary evaluation of process models with various
process discovery algorithms [5].

To address the problems, various approximation
strategies have been proposed, including optimizing the
search algorithm [6], [7] and decomposition schemes
[8], [9]. However, sampling provides another angle for
approximate conformance checking, such as sampling
traces to represent the event log [10], [11] or selecting
model traces to substitute for the process model [5],
[12]. In this paper, we adopt the latter approach, fo-
cusing on model sampling. Two main model sampling
methods exist: simulation [13] and candidate selection
[5]. We concentrate on candidate selection due to its
higher accuracy [5]. The candidate selection method
identifies representative traces from the event log (i.e.,
log behaviour subset), and then computes their optimal
alignments to determine the corresponding model traces
(i.e., model behaviour subset). The accuracy of this
approximation depends on the quality of the selected log
traces [12]. However, existing log selection techniques
(e.g., random, frequency-based [5], K-Medoids [14])
often lack behavioural diversity and model representative-
ness (see Section II), leading to reduced accuracy in the
conformance approximation. Hence, there is significant
potential for improving the quality of model behaviour
subsets.

In this paper, we propose an enhanced model be-
haviour sampling method to select more representative
subsets and obtain more accurate approximate values.
First, we apply hierarchical clustering to the event
log using our proposed distance criterion. Then, we
propose two in-cluster methods to select typical traces
from each cluster, which are then used to construct
more representative model behaviour subsets. Finally, we
extend the existing cost lower bound algorithm to achieve
more accurate approximation results. The experimental
results show that our approach yields more accurate
approximations than existing baselines, though with an
increased approximation time.

The remainder of this paper is organized as follows.
Section II provides a motivating example to further
illustrate the research problem. Section III discusses

www.ijacsa.thesai.org

l|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2014

Fig. 1.

related work in approximate conformance checking.
Section IV outlines the necessary preliminaries. In
Section V, we propose our method for constructing
model behaviour subsets using hierarchical clustering.
Section VI details the evaluation setup. Section VII
presents the experimental results, followed by Section
VIII. Finally, Section IX concludes the paper and presents
the limitations and future work.

II. MOTIVATING EXAMPLE

Research such as [5] and [15] has shown that
selecting more typical log traces lead to higher approxi-
mation accuracy. Thus, the key challenge is determining
which subset should be selected to improve approximate
accuracy. Existing log selection methods, such as the
frequency-based and K-medoids approaches, sometimes
lack sufficient log representativeness.

To illustrate the potential limitations of these methods,
we use a synthesized event log L. It contains 5,106 traces
consisting of 32,600 events and 12 trace variants, as
shown in Table 1.

TABLE 1. EVENT LOG
ID Trace Variant Freq || ID | Trace Variant | Freq
0 | {(a,b,c,d, f,e,g,h) | 1280 6 (a,d, f,h) 250
| {abede fogh) | 912 || 7 | {afibc) | 96
2 | (a,bedeg f.h) | 864 || 8 | (acefg) | 64
3 (a,b,c, h) 792 9 (a,d,e, g, h) 56
4 (a,b,c,d, h) 400 10 | {(a,b, f,e,g,h) 48
5 (a, h) 320 11 (b, f,9) 24

To discover the event log presented in Figure 1,
we applied the Inductive Miner algorithm [16] with
infrequent thresholds of 0.9.

Assuming that we select three variants to represent
the event log, i.e., the behavior subset consists of three
variants. Table II shows the behaviour subsets generated
by the frequency-based method, K-Medoids, and our
proposed methods (see Section V for details). The
frequency-based subsets show two key limitations:

a) Overestimation of Alignment Cost: Variant 5, (a, h),
can be perfectly replayed in the model with an alignment
cost of 0. But it is not included in our model behaviour

The Process Model discovered by Inductive Miner with infrequent threshold equals to 0.9.

subset, aligning it would require at least 6 insertions (i.e.,
cost of 6), resulting in an overestimated approximate cost.
b) Lack of Structural Diversity: The selected model traces
(a,b,c,d, f,e,g,h) and (a,b,c,d,e, f,g,h) differ only
in the order of e and f. This means that they repre-
sent essentially the similar structural path, potentially
overlooking other important paths in the process model.

Also, the K-Medoids method has drawbacks: it clus-
ters traces solely based on their control-flow information,
that is, syntactic difference. For example, the trace
(b, f,g) in log behaviour subset (as shown in Table II)
may have significantly syntactic differences from other
traces but, due to its low frequency (only 24 occurrences),
it is still not enough to represent the model behaviour.

To address the issues, our approach proposed in
Section V effectively balances frequency and control-
flow information. Table II also shows the cost deviation.
It refers to the difference in alignment cost between
using model behaviour subset and optimal-alignment.
The values indicate that the model behaviours generated
by our methods significantly reduce the cost deviations
compared to vanilla methods.

TABLE 2. BEHAVIOUR SUBSETS CONSTRUCTED BY FOUR
METHODS
Method Subset Result Cost Deviation
Log Behaviour S ={{a,b.c,d, f,e.g,h),{a,b,c,d e, f.g,h),
Frequency- (a,b,c,d, e g, f h)} 7806
based . Sar = {{a,b,c,d,), (a,b,c,d e, f.g.h),
Model Behaviour (a.bie,d.e.g. f.h)}
Log Behaviour 2L = {{a, h)(,b(l; b.; d,e, g, f h),
K-Medoids LEAL) 6596
o Model Behaviour Eu ={(a,h), (@b e, dre,g, o),
(a,b,e, f.g,h)}
Log Behaviour YL ={{a,h),{a,b,c,d, f.e,g,h), (a,b,c,h)}
In-cluster 4698
frequency Model Behaviour Sa = {{a,h), (a,b,c,d, f,e, g, h)
(a,b,c,h)}
Log Behaviour S. = {{a.d, f.h), (a.b,c.d. f.e, g, h),(a,b,c, h)}
In-cluster 4854
medoid Model Behaviour Su = {({a,d,h), (a,b,c,d, f,e, g, h)
(a,b,c,h)}

III. RELATED WORK

To cope with the complexity of alignment construc-
tion, approximation techniques have been developed
to balance result quality and computational cost. Early
studies explored replacing the A* algorithm with faster
algorithms[7], [17], [18], laying the foundation for a

www.ijacsa.thesai.org

2|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

more efficient alignment computation. For example,
Taymouri and Carmona [17], introducing an evolutionary
algorithm to enhance alignment approximations. Model
decomposition has also been investigated as an efficiency-
oriented approximation approach. The foundational work
demonstrated how breaking models into smaller and
more manageable parts can simplify alignment, although
it may not always result in optimal alignments [19],
[20]. Furthermore, the construction of automata capable
of aligning the log and the model has been explored
as another approximation technique [21], [22]. This
approach provides good approximations of the optimal
alignments in most cases. Recently, some researchers
have proposed using RNN-based neural networks to
obtain recall and precision metrics for event logs and
process models, demonstrating the potential of this
technique for conformance analysis [23], [24].

Reducing behaviour size is another promising strategy
for approximate conformance checking. One sampling
approach focuses on sampling the event log. For instance,
[25] proposes a trace sampling method, assuming that
a few log traces can estimate the conformance value.
However, it lacks upper and lower bounds for the
approximation and performs worse when the event log
contains many unique behaviors.

Another recent sampling approach targets model
behaviour. [5] introduced a model sampling method to
construct subsets of the model behaviour that represent
the entire process model, significantly reducing the
approximation time while largely maintaining accuracy.
The method also provides upper and lower bounds to
give some certainty of the approximation.

Hierarchical clustering is widely used in process min-
ing for its structural representativeness [26]. Furthermore,
[27] demonstrates how hierarchical clustering aids in
discovering a better model.

IV. PRELIMINARIES

This section presents the terminology and notation
for conformance checking to support the subsequent
sections. We use the basic definitions of Petri net, e.g.,
labeled Petri Net in [28].

Given a system net SN, ¢7(SN) is the set of all
complete firing sequences of SN and ¢,(SN) is the
set of all possible visible traces, i.e., complete firing
sequences starting in its initial marking and ending in
its final marking projected onto the set of observable
activities (not silent transitions, e.g., t3 in Figure 1).

To measure how a trace aligns to a process model,
moves are represented by pairs (a,t), where a is a log
activity, and ¢ is a model transition. Legal moves can be:
log moves , model moves, or synchronous moves . Any
other combination is an illegal move.

Definition 1. (Alignment). Let o0;, € L represent a
log trace and oy € ¢5(SN) denote a complete firing

Vol. XXX, No. XXX, 2014

sequence of a system net SN. Apy is the set of legal
moves. An alignment of o, and o) is a sequence of
pairs v € A7, such that the projection on the first
element (ignoring >) yields o, and the projection on
the second element (ignoring > and transition labels)
yields opy.

To quantify the costs of alignments we introduce a
cost function ¢ in Definition 2.

Definition 2. (Cost of Alignment). Cost function § €
Arn — N assigns costs to legal moves. The cost of an
alignment v € A} ,, is the sum of all costs:

5(v)= > 6a,t).

(a,t)ey

The cost values assigned to log moves, model moves,
and synchronous moves are 1, 1, and 0, respectively.
Note that an alignment is considered optimal if it has
the minimum alignment cost.

Definition 3. (Optimal Alignment). Let L be an event
log and SN a system net where ¢,(SN) # .

e For oL € L, we define:
Topsv € {y € Ay | Jou €
¢#(SN) is an alignment of oy, and o}

o An alignment v € I',, gn is optimal for trace
or, € L and system net SN if for any alignment

v €lo, m: 0(7) = 6(7).

o ysn € A}, — A, is a mapping that assigns
any log trace oy, to an optimal alignment, i.e.,
vsn(or) € Ty, sy and ysn(oyL) is an optimal
alignment.

Definition 4. (Levenshtein Edit Distance). As defined
by [29], the Levenshtein edit distance d(o1,02) — N
represents the minimum number of edit operations
(i.e., insertions, deletions, and substitutions) required
to transform one sequence into another. For instance,
d({a,b), (c,d)) = 2, where the two edit operations are
substitutions (a,c) and (b, d).

Definition 5. (Edit Distance Cost Function). We can
calculate the distance between two traces (or sequences)
faster by using a modified version of the Levenshtein
edit distance [30]. Let 01,09 € A* be two sequences of
activities. The Edit Distance Cost Function A(o1,092) —
N is defined as the minimum number of edits (insertion
or deletion of activities) required to transform o into
g9.

Suppose that S is a set of sequences, ®(oy,,5) =
ming,,cs A(or,on) returns the distance of the most
similar sequence in S. Let ¢,(SN) be the set of all
visible firing sequences in SN, and ~ysn(o) be an
optimal alignment for sequence o. It is possible to prove
that 5S(FYSN(O')) = (I)(O', ¢1J(SN))[]2]

www.ijacsa.thesai.org

3|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

In the context of alignment, the edit distance function
can be used as a cost function dg for evaluating the mis-
alignment between a log trace oz, and a model trace ;.
This cost function assigns a value corresponding to the
number of operations required to align the two sequences.
For example, A((a,c,b,e,d),{a,b,c,a,d)) = 4 corre-
sponds to two deletions and two insertions.

Moreover, the alignment cost of a single trace can
be converted into a fitness value between 0 (poor
fitness, i.e., maximal costs) and 1 (perfect fitness, i.e.,
zero costs) using Equation 1 [5]. In this regard, we
normalize this cost relative to the worst case, with one
log move for each activity in the trace and one model
move for each transition in the model’s shortest path,
SPM = min,,,c¢,(|oar|). Here, the optimal alignment
cost, (vsn (o)), can be replaced by an alternative cost
(e.g., edit distance cost) to obtain a corresponding fitness
value.

~ ds(ysn(0))

Fit race ’ N)=1 T 1, QDAS
itnesstace(or, SN) oo+ SPM

ey

Note that the overall fitness between the event log
and the system net is the weighted average of single
trace fitness values.

V. METHOD

In this section, we present the proposed conformance
approximation method. An overview of our approach is
shown in Figure 2. The method begins with a prepro-
cessing stage using hierarchical clustering techniques.
Next, two methods are proposed for constructing model
behaviour subsets: in-cluster frequency and in-cluster
medoid methods. Finally, the alignment approximation
process is explained.

A. Preprocess event log using hierarchical clustering

In this stage, we apply agglomerative hierarchical
clustering [31] on event logs. Specifically, we first
partition the event log based on trace variants to get
the trace variant subset X, . Then, we introduce the
normalized weighted Levenshtein distance to measure the
distance between these variants(see Definition 6) as a new
in-cluster distance criterion. This criterion considers both
frequency and control-flow information, alleviating the
problem with current log selection methods mentioned
in Section II. It is used to build a distance matrix, then
forming a dendrogram. By cutting-off the dendrogram,
we obtain the desired number of clusters. The framework
is illustrated in Figure 3.

Definition 6. (Normalized Weighted Levenshtein Dis-
tance). Let A* be the set of all possible sequences of
activities in A, and let 0,1,0.9 be two trace variants
€ A*. The normalized weighted Levenshtein distance

Vol. XXX, No. XXX, 2014

between o,1 and 0,2, where each trace variant has a
frequency f(o,1) and f(oy2), is defined as:
f(Um) : f(U’UQ) : dN(0v17UU2)
max{f(0v1)2> f(0v2)2}
2

where the normalized Levenshtein distance dn (0,1, 042)
is given by:

dweighted(avla Uv?) =

d(UUIaUUQ)
max{|oy1, |ov2|}

3

dN(lea 01}2) =

Here, dn(041,04,2) = 0 means the two traces are exactly
the same, and dn(0,1,042) = 1 means the two traces
are completely different.

Definition 7. (Distance Matrix). Let 01,02, ...,04; €
A* represent all trace variants in event log L. The matrix
D(L) is defined as, :

0 d(ovla Uv2) d(avla Uvi)
d(ov% le) 0 d<0v27 Uvi)
D(L) = : .
d(a'miao'vl) d(o't)iang) te 0
4)

where d is the normalized weighted Levenshtein distance
function.

B. Constructing Model Behaviour

In this stage, we first propose two in-cluster methods

to get log behaviour subset ; from the generated
clusters and transform it into the model behaviour subset
Y- Specifically,
a) Candidate selection: After preprocessing, we obtain
several clusters, each representing different behaviours
within the model. The following question is how to
choose the most representative traces from each cluster to
construct a more effective log behaviour subset. Existing
approaches in approximate conformance checking often
rely on either random sampling or frequency-based
selection without considering control-flow similarity,
which may lead to biased or suboptimal subsets when
the frequency distribution is highly imbalanced or when
rare but structurally central behaviours exist. To address
this, we extend the ideas of frequency-based and medoid
selection by introducing two in-cluster methods — the
in-cluster frequency method and the in-cluster medoid
method — designed to balance efficiency and represen-
tativeness.

The in-cluster frequency method selects, from each
cluster, the trace variant with the highest frequency
of occurrence. This approach assumes that the most
common behaviour within a cluster is also the most rep-
resentative of that cluster’s behaviour. Its main advantage
lies in computational efficiency, as it does not require
computing pairwise distances between traces. Compared
to methods that sample traces uniformly at random [25],
the frequency method reduces the risk of including low-
relevance traces, especially in large-scale logs.

www.ijacsa.thesai.org

4|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Event Log

<Variant 1>'°
<Variant 257
<\ariant 353
<Variant 45°

0

' Hierarchical
Clustering

Clustered-Sublogs

Miner

<Variant 1="7
<Variant 2-°

Preprocessing

Vol. XXX, No. XXX, 2014

Process model M

_______)‘
Inductive,

Alignment Approximation

[Approx.Fitness for L]

Weighted Average

Actual.Fitness| | Approx.Fitness

|
|
|
|
|
|
|
|
|
|
[
I
I
I
:
In-cluster Medoid ~,_ 7 :
v

@ @ for X for L-5;
=
- Edit Distance Cost
- ~.
" In-cluster Frequency \
Align L-Z; with Zpy
Log Behaviour Model Behaviour
Subset X; | :> Subset Iy
{<Variant 1>, Ontimal-All - {<Aligned Variant 1,
<Variant 3>, e BT <Aligned Variant 3>,
<Variant 4=} <Aligned Variant 4=}
A Constructing Model Behaviour Subset /

Fig. 2. Overview of our approach

The in-cluster medoid method, in contrast, selects

the trace variant that minimises the total Levenshtein
distance to all other traces in the cluster, effectively
identifying the ‘“central” trace in terms of control-
flow similarity. Specifically, it computes the pairwise
Levenshtein distances between all traces in each cluster,
then constructs a distance matrix and obtains the medoid
trace (see Definition 8). This ensures that the selected
trace best represents the structural characteristics of its
cluster, even if it is not the most frequent. Compared to
traditional frequency-only methods, the medoid approach
mitigates the bias towards dominant behaviours and is
more robust when clusters contain diverse but equally
important behaviours.
b) Optimal-alignment: In this step, we align > with
process model to construct the X5, that is, we compute
the optimal alignments of selected traces in the event
log and finding the corresponding model traces for these
alignments.

Table 3 shows three clusters generated from
the event log in Table 1. For example, apply-
ing the in-cluster frequency method to cluster 2
yields (a,b,c,h)™?, the most frequent trace. Re-
peating this for each cluster, we obtain >; =
{<a7 b7 &) d7 fa €9, h>12807 <a'a b7 <) h>7927 <a/7 h>320}' We
then align X;, with the process model as shown in Figure

1, resulting in X5;.Note that X7 and X, are same in
this example, as all traces can be fully replayed in the
model.

TABLE 3. THE CLUSTERS GENERATED FROM THE EXAMPLE

LOG PROVIDED IN TABLE 1

Cluster ID Traces in each cluster
1 {{a,b,c,d, f.e,g.R)*?%° (a,b,c,d, e, f,g.R)°'2, (a,b,c,d, e, f,g,h)5¢?}
2 {{a,b,c, k)% {a,b,c,d, h)*° (a, f,b,c)?C}
{(a, h)*?° (a,d, h)*®°, (a,c,e, f,g)%*,
(a,d,e,g,0)°% (a,b, f,e.g.0)"®, (b, f,)%}

3

The specific algorithm steps for proposed methods
are outlined in Algorithms 1 and 2.

Definition 8. (In-cluster Medoid). Let L' be a clustered
sublog, n denote the number of trace variants in L', and
D(L') be the distance matrix of L'. The trace o; =
arg min, e/ Zie[l’n] d(o;,0;) represents the medoid
trace of sublog L.

C. Computing Alignment Approximation

After constructing Mp, we use it to approximate
alignments for the traces in L — L, where L¢ refers to
the frequency-based trace variants used to build > y,. The
actual alignment fitness for the variants in X7, has already
been computed during the construction of Mp, so we can
directly use this value for more accurate approximations.

www.ijacsa.thesai.org

5|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2014

; New Distance Criterion:
:Normalized Weighted Levenshtein Distance !

<Trace Variant 1>

et

Variant-

based
<Trace Variant 1>17

<Trace Variant 25%
<Trace Variant 3>
<Trace Variant 452

<Trace Variant n> E

Event Log

i Cn

Trace Variant Subset X,

Fig. 3. Preprocessing workflow for hierarchical clustering

c1|C2| .. |Cn

o7y

<> INE e |
Partition cz NG !
d . N C2 ! i

Cn >

Distance Matrix Dendrogram

Algorithm 1 In-cluster Medoid Method

Algorithm 2 In-cluster Frequency Method

Input: Event log L; Process model M.

Qutput: Model behaviour subset X 5;.

Initialize log behaviour subset: X < ()

Initialize model behaviour subset: ¥, + 0

Partition L based on variants into X,

Cluster X, into k clusters {X,, ,, %5, ..

using hierarchical clustering

for i =1to k do

6: Compute pairwise Levenshtein distances between
all variants in X, ,

7: Construct distance matrix D(X,,,)

8: Find the medoid trace O'(LZ) in ¥, ;:

() Z d(o,0")

oy’ =arg min
vi S)IE

BN

’Eo'vk}

b

o

9: Update log behaviour subset: X7, < X U {U(Li)}
10: end for
11: for each O'(Ll) € X do

12: Compute optimal alignment 'ygp;\, between 0‘%)
and M] _

13: Map to model trace: 05\2) —)\SN(J(LZ))

14: Update model behaviour subset: 35 < 3p U
{oh}

15: end for

16: return X,

At this stage, we calculate the alignment approximations
for the remaining variants.

Typically, the actual fitness is calculated using
standard alignment costs. However, for the remaining
variants, we use the edit distance cost function A (see
Definition 5) to estimate fitness. This method provides
guaranteed upper and lower bounds for the alignment
cost, instead of exact values [5] (see Lemma 1 and

Input: Event log L; Process model M.
Output: Model behaviour subset ;.
Initialize log behaviour subset: X7, <)
Initialize model behaviour subset: X +
Partition L based on variants into X,
Cluster X, into k clusters {X, , % ., .., X6, }
using hierarchical clustering
for i =1 to k do
Let X, , denote the ¢-th cluster of variants

Find the most frequent variant U(Li) in ¥,
O'(Li) =arg max f(o)
oceEX

o

e

AR

vi

8: Update log behaviour subset: ¥y, « X1, U{O'g)}
9: end for
10: for each U(Lz) € Xy do

11: Compute optimal alignment v¢, between Ug)
and M))

12: Map to model trace: 05&) —)\SN(J(LZ))

13: Update model behaviour subset: 3 < Xp U
{0/}

14: end for

15: return X,

Lemma 2 below).

ZUELC f(0) x Fitnessapproximate (0, SN)
2oer fo)
Yoer—rg f(0) X Fitnessacua (g, SN)
>oer flo)

Fitness(L,SN) =

(&)

Lemma 1 (Alignment Cost Upper Bound). Let oy, € U}
be a log trace and op; € ¢,(SN) be a visible firing
sequence of SN. We have d6s(vsn(or)) < Alor,onm),

www.ijacsa.thesai.org

6|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

where ysn (o) is the optimal alignment.

Proof: The proof is provided in Appendix A and
demonstrates how the edit distance guarantees this upper
bound. u

Simply put, if we align trace variant 4 (a,b, ¢, d, h)
from Table 1 with o from the in-cluster frequency
subset in Table II, the alignment cost is 1 (i.e., removing
”d”). However, since o), is a subset of the full model,
the actual cost could be smaller or equal. Thus, we use
1 as the upper bound for this variant.

Lemma 2 (Alignment Cost Lower Bound). Let
SPM = min,, co (sn)|lom| and LPM =
MaXy,, eq,(SN) |OM|, representing the shortest and
longest paths in the process model M. o[s, (sn) and
k(o) are as defined in Definition 9.

For any log trace oy, if |or[a,(sn)| < SPM, the
alignment cost lower bound is SPM — o[a,(sn)| +
k(or); if lovla,snyl > LPM, the lower bound
is |0'L|—Av(SN)| — LPM + H(UL),' if SPM <
lor[a,(sn)| < LPM, the lower bound is k(o).

Proof: The proof is provided in Appendix B. H

The cost lower bound is the minimum edit operations
needed to transform o, into op;. We refine this algorithm
using activity projection (see Definition 9) to improve
approximation accuracy. Existing methods compare log
trace length directly with the model’s range, potentially
yielding errors if irrelevant activities are present. For
instance, in Figure 1, a trace (a,x) might seem aligned
if its length falls within the model’s shortest (SPM=2)
and longest paths (LPM=S), even though z is not in
the model, resulting in a miscalculated cost of 0. Our
algorithm removes non-model activities (e.g., removing x
from (a, x) to form (a)) before comparing trace lengths.
This adjustment yields a more accurate cost of 1 rather
than 0, resulting in a smaller upper fitness and tighter
bound width.

These bounds are then used to compute the corre-
sponding upper and lower fitness bounds (with the cost
upper bound giving the fitness lower bound, and vice
versa) using Equation 1. The computations for the fitness
bounds are provided in Algorithm 3 and 4. The average
of these bounds provides the approximate fitness. Once
we compute the approximate fitness for each remaining
variant, we take the weighted average of these values
along with the previously computed actual fitness to get
the overall approximate fitness for the entire event log,
as shown in Equation 5.

Definition 9 (Activity Projection). Let A,(SN) be the
set of unique observable activities in the system net
SN. For any log trace oy, let op, (AU(SN) represent the
projection of oy, onto A,(SN), which means the set of
activities in oy, that also appear in the model. Define
k(or) = |lorl —lorla,(sny| as the number of activities
in oy, that are not present in the model.

Vol. XXX, No. XXX, 2014

For example, let o, = {a,b,x) be a log trace
and the observable activities of the system net be
A, (SN) = {a,b,c,d,e}. Projecting o, onto A,(SN)
results in or[4,(sn)= (a,b), as x is not part of
Ay (SN). Therefore, k(or) = |op| — oL a,sn)| =
3 — 2 =1, indicating one activity in oy, is not present
in the model.

Algorithm 3 Fitness lower bound computation
Input: Event log L; Optimal-aligned Log L¢; Model
behaviour subset X j,.
Output: Lower bound fitness L_fitness(oy, M).
1: for each oy, € L — Lo do

2: ®(or, X)) // Compute minimun edit distance
cost Boy Sap)

. ; _ oL =M

i' d fL_fltneSS(ah M) 4= 1= oG gy (3 (701 T)

oen or

5: return L_fitness(or, M)

Algorithm 4 Fitness upper bound computation
Input: Event log L; Optimal-aligned Log L¢; Model
behaviour subset X p,.
Output: Upper bound fitness U_fitness(op, M).

1: SPM < min,,, g, (sn) |onr| // Shortest path
2: LPM « max,, c¢,(sn) |oa| // Longest path
3: for each o, € L — Lo do
4: Project o7, onto SN: or[4, (sn)
5: Compute k(or) = |op| —[or[a,sn)]
6: if |0L[A1,(SN)‘ < SPM then
7 U_fitness(or, M) — 1 -
SPM—|opTa, (sn)l+ror)
lopT+ming , “co, (sn)(TonD
8: else if [or, [4, (sn)y| > LPM then
. . » lonla,(sn)|—LPM+r(or)
9: U_fitness(or, M) + 1— oL ming cgu(sn) (oM D
10: else o)
. ; r(op
11: U_fitness(or, M) < 1— CFARET oy (Crva)
12: end if
13: end for

14: return U_fitness(or, M)

VI. EVALUATION

In this section, we assess the accuracy and time
performance of our proposed log selection methods
compared to frequency-based and K-Medoids techniques,
and evaluate their differences in accuracy and time
against normal alignment. Note that the comparison
between model behaviour sampling and other approxi-
mate methods has been discussed in [5], we focus here
on comparisons with the baselines of model behaviour
sampling. First, we briefly describe the implementation
(Section VI-A) and experimental setup (Section VI-B),
followed by a discussion of the experimental results
(Section VII).

A. Implementation

Our implementation consists of two steps: first,
we implemented the algorithms described in Sections
V-A and V-B in Python, to generate log behaviour

www.ijacsa.thesai.org

7|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

subsets from event logs. Specifically, we extended the
pm4py.algo.clustering package in PM4py [32] by intro-
ducing the normalized weighted Levenshtein distance
(Definition 6), to perform hierarchical clustering. And
implemented two proposed in-cluster methods to get the
log behaviour subset based on the clustering result. In
the second step, we used an existing plugin in ProM [33],
Conformance Log to Log Approximation [34], with the
generated model behaviour subset and the original event
log as input, obtaining approximate fitness bounds and
values. For the baselines, we used the implementation
proposed by Fanisani [5]. For normal alignment, we
used PM4py to compute the time and fitness values.
The source code and experimental results is available on
Github !.

B. Experimental Setup

Our experiments were based on six real event logs,
with basic information about these event logs given
in Table 4. Here, Uniqueness refers to \gﬂ% A
Uniqueness value close to 1 indicates that almost all
traces are different, e.g., Sepsis. For process discovery,
we used Inductive Miner infrequent algorithm [35] with
infrequent thresholds of 0.4 to get the process model.
Two log selection methods, frequency-based sampling, K-
Medoids clustering, were used as baselines to compare
with our proposed methods, i.e., In-cluster frequency
method and In-cluster medoid method. Furthermore,
we set the selection percentage to 10%, 20%, 30%,
40%, and 50%, representing the ratio of the selected
variants to the total number of variants in the event
logs. Our experiment was repeated four times since the
conformance approximation time is non-deterministic.
Finally, we performed the experiments on a computer
with Apple M1 (8 cores), 8§ GB RAM running macOS.

TABLE 4. THE REAL-LIFE EVENT LOGS USED IN THE
EXPERIMENTS

Event Log Activities # | Traces # | Variants # | Uniqueness
BPIC2012 [36] 25 13087 4366 0.33
BPIC2013-closed problems [37] 4 1487 183 0.12
BPIC2016-Questions [38] 8 21533 2261 0.10
BPIC2017 [39] 28 31509 15930 0.51
Spesis [40] 18 1050 846 0.81
RTFMP [41] 13 150370 231 0.01

1) Evaluation Metrics: To measure approxima-
tion accuracy, we used Approximate Error, de-
fined as ApproximateError = |ActualFitness —
ApprozimateFitness|, where a value closer to 0 indi-
cates higher accuracy. Additionally, we assess the Bound
Width as BoundWidth = U_fitness — L_fitness,
with a smaller width indicating tighter bounds and a
more accurate approximation.

We used the Performance Improvement (PI) metric,

Actual L Ti
defined as PI = ciual Conformance Time _ 4y 5qgegg
Approximate Conformance Time

time performance. Actual Conformance Time refers to

Thttps://github.com/lvyl9909/Approximate-Conformance-Checkin
g-using-Hierarchical-Clustering.git

Vol. XXX, No. XXX, 2014

the time needed to compute normal alignment, while
Approximate Conformance Time includes the total time
for the approximation. A PI value greater than 1
indicates the approximation is faster than the actual
conformance computation. Preprocessing time (e.g.,
hierarchical clustering) is included in the approximate
conformance time.

VII. RESULT

Table 5 presents the Actual Fitness and Approximate
Fitness, Approximate Error, and PI for four selection
methods using 20% of the variants in six event logs. For
each metric in a given row, the best value is highlighted
in bold. The results show that the proposed in-cluster
methods achieve the highest fitness and the lowest
approximate error in most cases, indicating superior
accuracy compared to the baselines. In terms of PI, the
frequency-based method consistently achieves the highest
values, reflecting its shorter approximate time. Our
complete experimental data is provided in Appendix B.

Figure 4 shows that both Approximate Error and
Bound Width decrease as the selection percentages
increase. Here, Bound Width is represented by bars, and
Approximate Error by lines, illustrating the improvements
in these metrics as the selection percentage increases. Our
in-cluster methods consistently achieve tighter bounds
at each selection percentage. Notably, at a selection
50% in the BPIC2017 log, the bound widths of the
baseline are around 0.05, while our methods reduce
this by 40% to 0.03. Furthermore, in all data sets with
different selection percentages, the in-cluster frequency
method shows an average improvement of 19.1% in
Approximate Error compared to the frequency-based
method, while the in-cluster medoid method achieves
an average improvement of 27.6% compared to the
K-Medoid method. Moreover, the in-cluster frequency
method often produces tighter bounds than in-cluster
medoid method, especially on low uniqueness logs like
BPIC2016-Questions, where selecting the most frequent
trace is more effective than clustering. However, on
high Uniqueness logs like Sepsis, in-cluster medoid
method provides more accurate approximations. In Figure
5, we compare the time performance of different log
selection methods and their improvement over normal
alignment. Note that a value of 1 represents the normal
alignment time. Consistent with the results in Table 5, the
frequency method usually yields the highest performance
improvement, followed by the K-Medoids method. Our
methods are less efficient compared to these baselines,
particularly on datasets with higher Uniqueness values.

VIII. DISCUSSION

Across Table 5 and Figure 4, our in-cluster methods
consistently achieve higher fitness, lower approximate
error, and tighter bounds than the baselines, with the
in-cluster frequency method performing better on low-
Uniqueness logs (e.g., BPIC2016-Questions) and the

www.ijacsa.thesai.org

8|Page

https://github.com/lvyl9909/Approximate-Conformance-Checking-using-Hierarchical-Clustering.git
https://github.com/lvyl9909/Approximate-Conformance-Checking-using-Hierarchical-Clustering.git

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2014

TABLE 5. APPROXIMATE RESULT COMPARISONS (20% SELECTION) FOR FOUR DIFFERENT SELECTION METHODS.
Event Log Actual i Frequency i K-Medoids i In-cluster freq. .In-cluster medoid
Fit. Err. PI Fit. Err. PI Fit. Err. PI Fit. Err. PI
BPIC2012 0.9995 | 0.9741 0.0254 61.8496 | 0.9761 0.0234 41.1727 | 0.9788 0.0207 25.6113 | 0.9806 0.0189 24.8483
BPIC2013-closed problems | 0.9997 | 0.9860 0.0138 11.8502 | 0.9711 0.0286 5.8732 | 0.9894 0.0103 1.6728 | 0.9875 0.0122 1.6443
BPIC2016-Questions 0.9997 | 0.9923 0.0074 45.3310 | 0.9463 0.0535 30.4731 | 0.9944 0.0053 13.1973 | 0.9565 0.0432 12.2026
BPIC2017 0.9995 | 0.9690 0.0305 11.8531 | 0.9700 0.0296 9.7231 | 0.9749 0.0246 1.9688 | 0.9747 0.0248 1.8838
Road 0.9999 | 0.9997 0.0002 15.7220 | 0.9996 0.0004 11.7262 | 0.9998 0.0001 7.5686 | 0.9995 0.0004 6.7700
Sepsis 0.9880 | 0.9202 0.0679 53.4338 | 0.9202 0.0678 44.9919 | 0.9313 0.0567 22.9238 | 0.9319 0.0561 20.0751
BPIC2012 BPIC2013-incident BPIC2016-Questions
0.21 0.09 0.21 0.09 0.21 0.09
BN Frequency
0.18 —] 0.18 0.18
In-cluster frequency 0.07 0.07 0.07
0.15 In-cluster medoid 5 0.15 5 0.15 5
Zon 005y 2012 005y 2012 0.05 2
E E % E g
& 0.09 s go.09 s o009 3
003 & 0.03& 003&
0.06 0.06 0.06
0.03 0.01 0.03 & oo " oo
0.00 10 20 30 40 50 0.00 0.00 10 20 40 50 0.00 0.00 10 20 30 40 50 0.00
Selection Percentage (%) Selection Percentage (%) Selection Percentage (%)
BPIC2017 RTFMP Sepsis
0.21 0.09 0.0025 0.0015 0.21 0.09
0.18 0.18
0.07 0.0020} 0.0012 0.07
0.15 N _ o1 N
- g . g . &
g 012 005; 20‘0015 0,0009; fon 0‘05;
3 009 g 30,0010 0.0006 £ 3 0.09 g
\ 0.03 % Z 0.03 %
0.06 0.06
’\“\‘\‘ 0.0005 0.0003
0.03 0.01 0.03 0.01
0,00 54— 5o 000 0.0000 —=E——==x m =) 0.0000 0.00 —=0——==5 o a0 0.00

Selection Percentage (%)

Fig. 4.

in-cluster medoid method excelling on high-Uniqueness
logs such as Sepsis, highlighting a key advantage of our
approach over the baselines—improved approximation
accuracy. Figure 5 shows that our methods have larger ap-
proximation times. This is because hierarchical clustering
requires step-by-step merging and evaluating all possible
cluster combinations, which increases preprocessing
time compared to baselines. Nevertheless, they remain
significantly faster than the normal alignment-based
approach, keeping approximation times within acceptable
limits while delivering higher accuracy—making them
well-suited for large-scale processes where neither a
quick, coarse estimate nor weeks of exact computation is
desirable. Overall, our results indicate a clear trade-off:
the proposed methods bring the approximations closer
to the actual values at the cost of some additional but
acceptable preprocessing time.

IX. CONCLUSION

In this paper, we propose an enhanced model be-
haviour sampling method using hierarchical clustering to

Selection Percentage (%)

Selection Percentage (%)

The performance differences of different selection strategies on band width and approximate error.

construct more representative model behaviour subsets.
By incorporating both frequency and control-flow infor-
mation from the event log, our approach more effectively
captures the model’s behaviour, leading to improved
approximation accuracy. Experimental results show that
our method produces approximations that are on average
over 19.1% closer to the actual alignment values than
baseline methods, though it requires more computation
time.

A potential limitation of this study is the lack of an
explicit quantification of how much increased” time
would be acceptable for the “improvement” in accuracy,
which is important to evaluate the practical utility of
the method under different application scenarios. As a
next step, we plan to conduct a systematic, quantitative
analysis of the accuracy—time trade-off. Based on it, an
incremental approximation tool could be developed to
increase the size of model behaviour during the time,
allowing the user to decide when the accuracy is enough.
In addition, we plan to apply a time-optimized hierar-
chical clustering algorithm to reduce the approximation

www.ijacsa.thesai.org

9|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

BPIC2012

= Frequency
== K-Medoids 00
mmm In-cluster frequency

100

mem In-cluster medoid

10

Performance Improvement

10% 20% 30% 40%

BPIC2017

50% 10% 20%

100 100

Performance Improvement

10% 20% 30% 40%

Selection Percentage (%)

50% 10% 20%

Fig. 5.

time of our method. Furthermore, exploring how to make
use of the distribution information (e.g., Uniqueness) in
the event log to choose a better approximate method is
also a direction for future research.

ACKNOWLEDGMENT

The authors would like to thank Artem Polyvyanyy
for his invaluable guidance and support throughout this
research project.

DECLARATION OF COMPETING INTEREST

The author declares that there are no known finan-
cial interests or personal relationships that could have
influenced the research presented in this paper.

REFERENCES
[1] A. A. Mitsyuk, I. A. Lomazova, I. S. Shugurov, and W. M.
van der Aalst. Process model repair by detecting unfitting
fragments? In Proceedings of the 6th International Conference
on Analysis of Images, Social Networks and Texts (AIST 2017),
pages 301-313. CEUR-WS. org, January 2017.

Wil Van der Aalst, Arya Adriansyah, and Boudewijn Van Dongen.
Replaying history on process models for conformance checking
and performance analysis. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 2(2):182—192, 2012.

J Carmona, B Dongen, A Solti, and M Weidlich. Conformance
checking: Relating processes and models, january 2018.

(2]

(3]

BPIC2013-incident

30%
RTFMP

30%

(4]

(5]

(6]

(7]

(8]

(91

[10]

[11]

[12]

40% 50% 10%

40%
Selection Percentage (%)

Vol. XXX, No. XXX, 2014

BPIC2016-Questions

100

10

20% 30% 40%
Sepsis

50%

100

10

50% 10% 20% 30% 40%

Selection Percentage (%)

50%

The performance improvement using different methods in six event logs

Massimiliano De Leoni and Wil MP Van Der Aalst. Aligning
event logs and process models for multi-perspective conformance
checking: An approach based on integer linear programming. In
Business Process Management: 11th International Conference,
BPM 2013, Beijing, China, August 26-30, 2013. Proceedings,
pages 113-129. Springer, 2013.

M. Fani Sani, S.J. van Zelst, and W.M.P. van der Aalst.
Conformance checking approximation using subset selection
and edit distance. In In: Dustdar, S., Yu, E., Salinesi, C., Rieu,
D., Pant, V. (eds) CAIiSE 2020. LNCS, volume 12127, pages
234-251. Springer, 2020.

Alifah Syamsiyah and Boudewijn F van Dongen. Improving
alignment computation using model-based preprocessing. In
2019 International Conference on Process Mining (ICPM), pages
73-80. IEEE, 2019.

Farbod Taymouri and Josep Carmona. A recursive paradigm for
aligning observed behavior of large structured process models.
In International Conference on Business Process Management,
pages 197-214. Springer, 2016.

Jorge Munoz-Gama, Josep Carmona, and Wil MP Van Der Aalst.
Single-entry single-exit decomposed conformance checking.
Information Systems, 46:102-122, 2014.

Alifah Syamsiyah and Boudewijn F van Dongen. Improving
alignment computation using model-based preprocessing. In
2019 International Conference on Process Mining (ICPM), pages
73-80. IEEE, 2019.

Martin Bauer, Han Van der Aa, and Matthias Weidlich. Es-
timating process conformance by trace sampling and result
approximation. In Business Process Management: 17th Interna-
tional Conference, BPM 2019, Vienna, Austria, September 1-6,
2019, Proceedings 17, pages 179-197. Springer, 2019.

Martin Bauer, Han van der Aa, and Matthias Weidlich. Sampling
and approximation techniques for efficient process conformance
checking. Information Systems, 104:101666, 2022.

M.F. Sani, M. Kabierski, S.J. Van Zelst, et al. Model independent

www.ijacsa.thesai.org

10| Page

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(IJACSA) International Journal of Advanced Computer Science and Applications,

error bound estimation for conformance checking approximation.
Preprint on arXiv, 2021. Available at https://arxiv.org/abs/2103
.13315.

M. Fani Sani, J.J. Garza Gonzalez, S.J. van Zelst, and W.M.P.
van der Aalst. Conformance checking approximation using
simulation. In 2nd International Conference on Process Mining,
ICPM 2020, pages 105-112, Padua, Italy, 2020. IEEE.

Mohammadreza Fani Sani, Mathilde Boltenhagen, and Wil
van der Aalst. Prototype selection using clustering and con-
formance metrics for process discovery. In Business Process
Management Workshops: BPM 2020 International Workshops,
Seville, Spain, September 13—18, 2020, Revised Selected Papers
18, pages 281-294. Springer, 2020.

Mohammadreza Fani Sani, Mathilde Boltenhagen, and Wil
van der Aalst. Prototype selection using clustering and con-
formance metrics for process discovery. In Business Process
Management Workshops: BPM 2020 International Workshops,
Seville, Spain, September 13—18, 2020, Revised Selected Papers
18, pages 281-294. Springer, 2020.

Sander JJ Leemans, Dirk Fahland, and Wil MP Van Der Aalst.
Discovering block-structured process models from event logs
containing infrequent behaviour. In Business Process Manage-
ment Workshops: BPM 2013 International Workshops, Beijing,
China, August 26, 2013, Revised Papers 11, pages 66-78.
Springer, 2014.

Farbod Taymouri and Josep Carmona. An evolutionary technique
to approximate multiple optimal alignments. In Business Process
Management: 16th International Conference, BPM 2018, Sydney,
NSW, Australia, September 9-14, 2018, Proceedings 16, pages
215-232. Springer International Publishing, 2018.

Farbod Taymouri and Josep Carmona. Computing alignments
of well-formed process models using local search. ACM Trans-
actions on Software Engineering and Methodology (TOSEM),
29(3):1-41, 2020.

Jorge Munoz-Gama, Josep Carmona, and Wil M. P. Van
Der Aalst. Single-entry single-exit decomposed conformance
checking. Information Systems, 46:102-122, 2014.

Wil M. P. Van der Aalst. Decomposing petri nets for process
mining: A generic approach. Distributed and Parallel Databases,
31:471-507, 2013.

Sander JJ Leemans, Dirk Fahland, and Wil MP Van der Aalst.
Scalable process discovery and conformance checking. Software
& Systems Modeling, 17:599-631, 2018.

Daniel Reilner, Abel Armas-Cervantes, Raffaecle Conforti,
Marlon Dumas, Dirk Fahland, and Marcello La Rosa. Scalable
alignment of process models and event logs: An approach based
on automata and s-components. Information Systems, 94:101561,
2020.

Yilin Lyu. A mamba-based approximate conformance checking
method. In Fourth International Conference on Advanced
Algorithms and Neural Networks (AANN 2024), volume 13416,
pages 885-891. SPIE, 2024.

Jari Peeperkorn, Seppe vanden Broucke, and Jochen De Weerdt.
Supervised conformance checking using recurrent neural network
classifiers. In International Conference on Process Mining, pages
175-187. Springer, 2020.

Matthias Bauer, Hilde van der Aa, and Matthias Weidlich.
Sampling and approximation techniques for efficient process
conformance checking. Information Systems, 104:101666, 2022.

Jae-Yoon Jung, Joonsoo Bae, and Ling Liu. Hierarchical
clustering of business process models. International Journal
of Innovative Computing, Information and Control, 5(12):1349—
4198, 2009.

S.J. van Zelst and Y. Cao. A generic framework for attribute-
driven hierarchical trace clustering. In A. Del Rio Ortega,
H. Leopold, and FM. Santoro, editors, Business Process
Management Workshops. BPM 2020, volume 397 of Lecture
Notes in Business Information Processing. Springer, Cham, 2020.

Vol. XXX, No. XXX, 2014

[28] Wil M. P. Van der Aalst. Decomposing petri nets for process
mining: A generic approach. Distributed and Parallel Databases,

31(4):471-507, 2013.

V Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Proceedings of the Soviet physics
doklady, 1966.

Peter H. Sellers. On the theory and computation of evolutionary
distances. SIAM Journal on Applied Mathematics, 26(4):787—
793, 1974.

Daniel Miillner. Modern hierarchical, agglomerative clustering
algorithms. arXiv preprint arXiv:1109.2378, 2011.

Alessandro Berti, Sebastiaan van Zelst, and Daniel Schuster.
Pmdpy: A process mining library for python. Software Impacts,
17:100556, 2023.

HMW Verbeek, JCAM Buijs, BF Van Dongen, and Wil MP
van der Aalst. Prom 6: The process mining toolkit. Proc. of
BPM Demonstration Track, 615:34-39, 2010.

Mohammadreza Fani Sani, Juan J Garza Gonzalez, Sebastiaan J
van Zelst, and Wil MP van der Aalst. Alignment approximator:
A prom plug-in to approximate conformance statistics. In BPM
(Demos/Resources Forum), pages 102-106, 2023.

Sander JJ Leemans, Dirk Fahland, and Wil MP Van Der Aalst.
Discovering block-structured process models from event logs
containing infrequent behaviour. In Business Process Manage-
ment Workshops: BPM 2013 International Workshops, Beijing,
China, August 26, 2013, Revised Papers 11, pages 66—78.
Springer, 2014.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]

Boudewijn van Dongen. Bpi challenge 2012, 2012.
Ward Steeman. Bpi challenge 2013, closed problems, 2013.

M. Dees and Boudewijn van Dongen. Bpi challenge 2016:
Questions, 2016.

[39] Boudewijn van Dongen. Bpi challenge 2017, 2017.
[40]

[41]

Felix Mannhardt. Sepsis cases - event log, 2016.

M. (Massimiliano) de Leoni and Felix Mannhardt. Road traffic
fine management process, 2015.

APPENDIX
A. Proof of Alignment Cost Upper Bound

Proof: We have shown that min,,,cs A(or, o) =
0s(vsn(or)) in Definition 5, so A(op,on) >
0s(vsn(or)). Therefore, if ds(ysn(or)) >
A(or,onm), vsn(op) is not an optimal alignment.
Consequently, for any Mp C ¢,(SN), ®(or, Mp)
returns an upper bound for the cost of optimal alignment

[5].

B. Proof of Alignment Cost Lower Bound

Proof: When |or[a,sn| < SPM, at least
SPM — |or[a,(sn)| insertions are needed. Adding
the initial alignment cost, the total minimum alignment
cost is [SPM — o[a,(sn)l +|k(or)|. Similarly, when
|UL’—AU(SN)| > LPM, at least |0-L’—AU(SN)| — LPM
deletions are required. Thus, the total alignment cost
is |UL|—A,,(SN)_LPM| + ‘K(O'L)|. When SPM <
lor[a, sz < LPM, no insertions or deletions are
needed, so the alignment cost is |x(or)|. |

www.ijacsa.thesai.org

I1|Page

https://arxiv.org/abs/2103.13315
https://arxiv.org/abs/2103.13315

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. XXX, No. XXX, 2014

TABLE 6: Experimental results for datasets.

Normal “Approximation Method
Actual Torma Candidate Baseline Tn-cluster medoid
Log) Alignment Parameter —— ——
Fitness) Percentage . In-cluster In-cluster
Time Frequency K-Medoids .
frequency medoid
Lower 09167 09371 09368 09416
Bound
Approximate Approximate
B e e 09583 0.9685 09684 09708
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0412 0.0310 0.0311 0.0287
Error
Band
10% Width 00833 0.0629 00632 0.0584
Preprocessing / / 1219923 1259201
Time (ms)
Approximate 411778 439928 25030 26102
Time (ms)
Total Approximate 411778 439928 1244953 1285303
Time (ms)
PI 859687 804677 784348 77,5421
Lower 0.9482 09522 09576 09612
Bound
Approximate [~ Approximate 09741 09761 09788 0.9806
fitness fitness
Upper 1.0000 10000 1.0000 10000
Bound
Approximation 00254 0.0234 00207 00189
Error
Band
20% Width 00518 00478 0.0424 00388
Preprocessing / / 1342972 1392321
Time (ms)
Approximate 572356 859792 39232 32323
Time (ms)
Total Approximate 572356 859792 1382204 1424644
Time (ms)
61,8496 ITT727 256113 248483
Lower 09618 0.9629 09688 09702
Bound
Approxima T
pprovimate | Approximare 09809 0.9814 09844 0.9851
tness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0186 00181 00151 00144
Error
Band
30% Wil 00382 0.0371 00312 00298
P'Tci‘:;‘;"(cr’:s")‘g / / 1423219 1529312
BPIC2012 09995 35400000 e
Pproxim: 702244 1186892 41992 42223
Time (ms)
Total Approximate 702244 1186892 1465211 1571535
Time (ms)
P 50.4008 798258 241603 225257
Lower 0.9681 0.9690 09756 09730
Bound
Approximate [~ Approximate 09841 0.9845 09878 09865
fitness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 00155 0.0150 00117 00130
Error
Band
0% Widh 00319 0.0310 0.0244 00270
Preprocessing / / 1591211 1730030
Time (ms)
Approximate 1229401 1480757 41503 49020
Time (ms)
Total Approximate 1229401 1480757 1632714 1779050
Time (ms)
P 78,7945 23.9067 216817 19.8983
Lower 0.9745 09752 0.9802 0.9888
Bound
Approxima TS
pRroximate Approximate 09873 0.9876 0.9901 0.9944
tness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 00123 0.0119 0.0094 0.0051
Error
Band
0% Width 00255 0.0248 00198 00112
Preprocessing / / 1823900 2102097
Time (ms)
Approximate 1863573 1971131 42826 43503
Time (ms)
Total Approximate 1863573 1971131 1866726 2145600
Time (ms)
PI 18.0958 17,9502 18.0637 164989

www.ijacsa.thesai.org 12|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. XXX, No. XXX, 2014

TABLE 6: Experimental results for datasets.

Table 6 continued.

ot “Approximation Method
Actual worma Candidate Baseline Tn-cluster medoid
Log . Alignment 3 Parameter T T
Fitness ! Percentage . In-cluster In-cluster
Time Frequency K-Medoids 3
frequency medoid
Lower 0.9559 09025 0.9610 0.9560
Bound
Approximate [Approximate 09780 09513 09805 09780
fitness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 00218 0.0485 00192 00217
Error
Band
10% Width 0.0441 0.0975 00390 0.0440
Preprocessing / / 69233 70923
Time (ms)
Approximate 4200 19572 2033 2992
Time (ms)
Total Approximate 4200 19572 71266 73915
Time (ms)
322381 69180 13999 13318
Lower 09719 09422 09788 09750
Bound
Approximate " Approximate 09860 09711 09894 09875
fitness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 00138 0.0286 0.0103 00122
Error
Band
2
20% Width 0.0281 0.0578 00212 0.0250
Preprocessing / / 78012 79232
Time (ms)
Approximate 11426 23054 2932 3111
Time (ms)
Total Approximate 11426 23054 80944 82343
Time (ms)
P 118502 58732 16728 6433
Lower 0.9795 0.9554 0.9860 0.9810
Bound
Approximate Approximate
O o 09898 09777 09930 09905
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0100 0.0220 0.0067 0.0092
Error
Band
0% Width 00205 0.0446 00140 00190
Preprocessing / / 81203 85003
L Time (ms)
BPIC2013-incident 09997 135400 e
PP 17294 27553 3504 4092
Time (ms)
Total Approximate 17294 27553 84707 89095
Time (ms)
PI 78293 39142 15085 15197
Lower 0.9839 0.9612 0.9902 0.9850
Bound
Approximate [~ Approximate 09920 0.9806 09951 09925
fitness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0078 0.0191 0.0046 00072
Error
Band
10% Widh 00161 0.0388 0.0098 00150
Preprocessing / / 89129 91892
Time (ms)
Approximate 27133 32868 3932 3902
Time (ms)
Total Approximate 27133 32868 93061 95794
Time (ms)
P 79902 71195 14550 T4134
Lower 0.9875 09825 0.9920 0.9879
Bound
Approxima o
pproximate | Approximate 0.9938 0.9913 0.9960 0.9940
tness fitness
Upper 10000 1.0000 1.0000 1.0000
Bound
Approximation 0.0060 0.0085 0.0037 0.0058
Error
Band
s0% Wi 00125 00175 0.0080 00121
Preprocessing / / 95002 104023
Time (ms)
Approximate 34006 41028 4002 4350
Time (ms)
Total Approximate 34006 41028 99004 108373
Time (ms)
P 30817 33002 13676 12494

www.ijacsa.thesai.org 13|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. XXX, No. XXX, 2014

TABLE 6: Experimental results for datasets.

Table 6 continued.

Normat “Approximation Method
Actual worma Candidate Baseline Tn-cluster medoid
Log . Alignment 3 Parameter —— ——
Fitness) Percentage . In-cluster In-cluster
Time Frequency K-Medoids 3
frequency medoid
Lower 0.9679 0.8867 0.9680 0.8911
Bound
Approximate [Approximate 09840 0.9434 09840 09455
fitness fitness
Upper 1.0000 1.0000 0.9999 0.9999
Bound
Approximation 00158 0.0564 00158 00542
Error
Band
10% Width 00321 0.1133 00319 0.1088
Preprocessing / / 359923 389454
Time(ms)
Approximate 47607 61807 2715 1551
Time(ms)
Total Approximate 47607 61807 362638 391005
Time(ms)
T09.2421 $4.1440 143413 13.3008
Lower 0.9845 0.8925 0.9888 09130
Bound
API;'OX'TE'E Approximate 09923 0.9463 09944 09565
tness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0074 0.0535 00053 0.0432
Error
Band
i Width 00155 0.1075 00112 0.0870
Preprocessing / / 390239 421292
Time(ms)
Approximate 114727 170665 3832 4902
Time(ms)
Total Approximate 114727 170665 394071 426194
Time(ms)
P 753310 304731 13.1973 122026
Lower 09874 0.9087 09920 09309
Bound
Approximate Approximate
F o 09937 0.9544 09960 09655
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0060 0.0454 0.0037 0.0343
Error
Band
30% Widh 00126 0.0913 0.0080 0.0691
P';.‘i’;;’:;;;‘)“g / / 448922 489322
BPIC2016-Questions | 0.9997 5200690 o
PP 176359 266266 6020 6334
Time(ms)
Total Approximate 176359 266266 454942 495656
Time(ms)
PI 79,4892 195319 14315 104925
Lower 0.9896 09114 0.9940 0.9440
Bound
Approximate [~ Approximate 09948 0.9557 09970 09720
fitness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0049 0.0440 0.0027 0.0277
Error
Band
40% Widh 00104 0.0886 0.0060 0.0560
Preprocessing / / 483200 530239
Time(ms)
Approximate 280456 325313 9910 10355
Time(ms)
Total Approximate 280456 325313 493110 540594
Time(ms)
P 185437 15.0867 10.5467 9.6203
Lower 0.9913 09294 0.9960 0.9503
Bound
Approxima o
pRroximate Approximate 09957 0.9647 0.9980 09752
tness fitness
Upper 10000 10000 1.0000 1.0000
Bound
Approximation 0.0060 0.0085 0.0037 0.0058
Error
Band
50% Wi 00125 00175 0.0080 00121
Preprocessing / / 566660 602030
Time(ms)
Approximate 395799 445163 15330 14340
Time(ms)
Total Approximate 395799 445163 581990 616370
Time(ms)
P 13.1307 11,6827 5.9360 854376

www.ijacsa.thesai.org 14|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. XXX, No. XXX, 2014

TABLE 6: Experimental results for datasets.

Table 6 continued.

Normat “Approximation Method
Actual worma Candidate Baseline Tn-cluster medoid
Log . Alignment 3 Parameter —— ——
Fitness) Percentage . In-cluster In-cluster
Time Frequency K-Medoids 3
frequency medoid
Lower 0.9332 0.9381 0.9454 0.9450
Bound
Approximate [Approximate 09666 0.9691 09726 09725
fitness fitness
Upper 1.0000 1.0000 0.9997 1.0000
Bound
Approximation 00329 0.0305 00270 00270
Error
Band
10% Width 0.0668 0.0619 00543 0.0550
Preprocessing / / 86490212 87983292
Time (ms)
Approximate 4049416 4399280 400366 509232
Time (ms)
Total Approximate 4049416 4399280 86890578 88492524
Time (ms)
74,6556 31,1043 20811 20434
Lower 0.9380 09399 0.9497 0.9493
Bound
Approximate [Approximate 09690 0.9700 09749 09747
fitness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 00305 0.0296 00247 0.0249
Error
Band
i Width 0.0620 0.0601 00503 00507
Preprocessing / / 91423432 95431122
Time(ms)
Approximate 15255832 18597920 424210 561543
Time(ms)
Total Approximate 15255832 18597920 91847642 95992665
Time(ms)
P TT8531 97231 T9658 18838
Lower 09431 0.9420 09510 09512
Bound
Approximate Approximate
F o 09715 09710 09755 09756
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0280 0.0285 0.0240 0.0239
Error
Band
30% Widh 00569 0.0580 0.0490 00488
P';.‘i’;;’:;;;‘)“g / / 95294232 99874342
BPIC2017 09995 | 180829300 o
PP 13089388 16606568 502321 424931
Time(ms)
Total Approximate 13089388 16606568 95796553 100299273
Time(ms)
PI 138150 10.8590 13876 13029
Lower 0.9481 0.9480 0.9575 0.9564
Bound
Approximate [~ Approximate 09741 0.9740 09788 09782
fitness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 00255 0.0255 00208 00213
Error
Band
40% Widh 00519 0.0520 00425 0.0436
Preprocessing / / 99034313 | 100293122
Time(ms)
Approximate 16294010 18807577 582312 510124
Time(ms)
Total Approximate 16294010 18807577 99616625 100803246
Time(ms)
P T1.0979 96147 18153 17939
Lower 0.9528 09527 0.9682 0.9691
Bound
Approxima o
P ‘:i"’x'fr_““e Approximate 0.9764 09764 0.9841 0.9846
tness fitness
Upper 10000 10000 1.0000 1.0000
Bound
Approximation 0.0231 0.0232 0.0154 0.0150
Error
Band
50% Wi 00472 0.0473 00318 0.0309
Preprocessing / / 108224313 119901232
Time(ms)
Approximate 20183838 22539508 391222 454002
Time(ms)
Total Approximate 20183838 | 22539508 | 108615535 | 120355234
Time(ms)
P 8.0501 30228 16649 15025

www.ijacsa.thesai.org I5|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. XXX, No. XXX, 2014

TABLE 6: Experimental results for datasets.

Table 6 continued.

Normat “Approximation Method
Actual worma Candidate Baseline Tn-cluster medoid
Log . Alignment Parameter — ——
Fitness) Percentage . In-cluster In-cluster
Time Frequency K-Medoids 3
frequency medoid
Lower 0.9987 09975 0.9989 0.9980
Bound
Approximate [Approximate 09994 0.9988 09993 09990
fitness fitness
Upper 1.0000 1.0000 0.9997 1.0000
Bound
Approximation 0.0006 0.0011 0.0006 0.0009
Error
Band
10% Width 00013 0.0025 0.0008 0.0020
Preprocessing / / 10585 1021
Time(ms)
Approximate 8986 15555 2901 3531
Time(ms)
Total Approximate 8986 15555 13486 14552
Time(ms)
145148 83851 96715 89630
Lower 0.9994 09991 0.9994 0.9990
Bound
Approximate [Approximate 09997 0.9996 09997 0.9995
fitness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0002 0.0004 0.0002 0.0004
Error
Band
i Width 0.0006 0.0009 0.0006 0.0010
Preprocessing / / 14012 15432
Time(ms)
Approximate 8296 11123 3221 3834
Time(ms)
Total Approximate 8296 11123 17233 19266
Time(ms)
P 15,7220 17262 75686 6.7700
Lower 09994 0.9992 09994 09994
Bound
Approximate Approximate
F o 09997 0.9996 09997 09997
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0002 0.0003 0.0002 0.0002
Error
Band
30% Widh 0.0006 0.0008 0.0006 0.0006
P';.‘i’;;’:;;;‘)“g / / 15236 22293
RTFMP 0.9999 130430 o
PP 9831 10222 33 3923
Time(ms)
Total Approximate 9831 10222 18468 26216
Time(ms)
PI 132672 12.7597 7.0625 39752
Lower 0.9996 0.9993 0.9998 0.9996
Bound
Approximate [~ Approximate 09998 0.9997 09999 09998
fitness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0001 0.0003 0.0000 0.0001
Error
Band
2
40% Widh 0.0004 0.0007 0.0002 0.0004
Preprocessing / / 17222 24422
Time(ms)
Approximate 10323 13123 4442 23
Time(ms)
Total Approximate 10323 13123 21664 28654
Time(ms)
P 12,6349 99390 6.0206 73519
Lower 0.9998 0.9996 0.9998 0.9997
Bound
Al imate imad
pproximate | Approximate 0.9999 0.9998 0.9999 0.9999
tness fitness
Upper 10000 10000 1.0000 1.0000
Bound
Approximaion 0.0000 0.0001 0.0000 0.0000
Srror
Band
50% Wi 0.0002 0.0004 0.0002 0.0003
Preprocessing ; ; 19203 0020
Time(ms)
Approximate 9050 10212 4301 5021
Time(ms)
Total Approximate 9050 10212 23504 35041
Time(ms)
P 124122 127722 55403 37222

www.ijacsa.thesai.org 16| Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. XXX, No. XXX, 2014

TABLE 6: Experimental results for datasets.

Table 6 continued.

Normat “Approximation Method
Actual worma Candidate Baseline Tn-cluster medoid
Log . Alignment 3 Parameter —— ——
Fitness) Percentage . In-cluster In-cluster
Time Frequency K-Medoids 3
frequency medoid
Lower 0.7959 07965 0.8204 0.8100
Bound
Approximate [Approximate 0.8980 0.8983 09101 09050
fitness fitness
Upper 1.0000 1.0000 0.9997 1.0000
Bound
Approximation 0.0901 0.0898 00780 0.0830
Error
Band
10% Width 02041 0.2035 0.1793 0.1900
Preprocessing / / 107478 110312
Time(ms)
Approximate 32599 28302 1902 2032
Time(ms)
Total Approximate 32599 28302 109380 112344
Time(ms)
93.1072 1072433 27,7491 27,0170
Lower 0.8403 0.8404 0.8626 0.8638
Bound
Approximate [Approximate 09202 0.9202 09313 09319
fitness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0679 0.0678 00567 0.0561
Error
Band
i Width 0.1597 0.159 0.1374 0.1362
Preprocessing / / 130101 148903
Time(ms)
Approximate 56803 67461 2303 2289
Time(ms)
Total Approximate 56803 67461 132404 151192
Time(ms)
P 534338 739919 220738 20,0751
Lower 08701 0.8405 0.8730 0.8748
Bound
Approximate Approximate
F o 09351 0.9203 09365 09374
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0530 0.0678 0.0515 0.0506
Error
Band
30% Widh 0.1299 0.1595 0.1270 0.1252
P';.‘i’;;’:;;;‘)“g / / 159232 162820
Sepsis 09880 3035200 o
PP 79763 60393 5201 5433
Time(ms)
Total Approximate 79763 60393 164433 168253
Time(ms)
PI 380527 502575 184586 18.0395
Lower 0.8931 0.8959 0.9066 0.9015
Bound
Approximate [~ Approximate 09466 0.9480 09533 09508
fitness fitness
Upper 1.0000 1.0000 1.0000 1.0000
Bound
Approximation 0.0415 0.0400 0.0347 00373
Error
Band
40% Widh 0.1069 0.1041 00934 0.0985
Preprocessing / / 182782 209212
Time(ms)
Approximate 102649 116824 6123 5736
Time(ms)
Total Approximate 102649 116824 188905 214948
Time(ms)
P 79,5687 759810 16.0673 12,1206
Lower 09112 09113 09255 09192
Bound
Approxima o
pRroximate Approximate 09556 0.9557 09628 09596
tness fitness
Upper 10000 10000 1.0000 1.0000
Bound
Approximation 0.0324 0.0324 0.0253 0.0284
Error
Band
50% Wi 0.0888 0.0887 00745 0.0808
Preprocessing / / 209823 222011
Time(ms)
Approximate 126803 137461 3508 3769
Time(ms)
Total Approximate 126803 137461 213331 225780
Time(ms)
P 239363 22,0804 122277 134432

www.ijacsa.thesai.org 17|Page

	Introduction
	Motivating Example
	Related Work
	Preliminaries
	Method
	Preprocess event log using hierarchical clustering
	Constructing Model Behaviour
	Computing Alignment Approximation

	Evaluation
	Implementation
	Experimental Setup
	Evaluation Metrics

	Result
	Discussion
	Conclusion
	References
	Appendix
	Proof of Alignment Cost Upper Bound
	Proof of Alignment Cost Lower Bound

